Intussusceptive Growth of Vascular Bed in Human Placenta

Main Article Content

Pınar Ayran Fidan
Fatma Helvacıoğlu
Attila Dağdeviren


Objective: Normal embryonic and fetal development is strictly bound to maternal health and functioning placenta. Besides the invasion and differentiation of trophoblastic cell lineage; development of effective vasculature is crucial for the function of placenta. Placental vessels first arise by vasculogenesis in early development of villi and then succeeded by angiogenesis during fetal life. In the recent decades a new form of angiogenesis, “intussusceptive angiogenesis”, besides classical sprouting angiogenesis is well documented. The presence of intussusception was shown at multiple organs but in placenta, in recent literature. We aimed to determine whether intussusceptive angiogenesis is present in human placenta to obtain further evidence on the development of vascular bed.
Methods: The term placenta samples were obtained from 10 healthy pregnancies following caesarean sections. Tissues were processed using routine plastic embedding technique; thin sections were contrasted with uranyl acetate & lead citrate; observed and photographed by transmission electron microscope.
Results: Our examinations revealed that both sprouting and intussusceptive angiogenesis is present in floating villi of term placenta. Phases of intussusception were documented in various samples.
Conclusion: The presence of intussusceptive angiogenesis will help our understanding of microvascular bed remodeling during pregnancy. We believe that this new finding will help us to determine the relation of microvascular bed development in normal and abnormal placentas.

Article Details

Original Research
Author Biographies

Pınar Ayran Fidan, Başkent University

Department of Histology and Embriyology, MD

Fatma Helvacıoğlu, Başkent University

Department of Histology and Embriyology, PhD

Attila Dağdeviren, Başkent University

Department of Histology and Embriyology, Professor MD.


Moore KL, Persaud TVN, Torchia MG. Before we are born. 7th edition, Philadelphia, Saunders Elsevier; 2008.

Dempsey EW. The Development of capillaries in the villi of early human placentas. Am J Anat. 1972; 134(2): 221-37.

Demir R, Kaufmann P, Castellucci M, Erbengi T, Kotowski A. Fetal vasculogenesis and angiogenesis in human placental villi. Acta Anatomica 1989; 136: 190-203.

Te Velde EA, Exalto N, Hesseling P, Van der Linden HC. First trimester development of human chorionic villous vascularization studied with CD34 immunohistochemistry. Hum Reprod. 1997; 12: 1577–1581. doi:10.1093/humrep/12.7.1577.

Demir R, Kayisli UA, Cayli S, Huppertz B. Sequential steps during vasculogenesis and angiogenesis in the very early human placenta. Placenta 2006; 27: 535–539. doi:10.1016/j.placenta.2005.05.011.

Demir R, Seval Y, Huppertz B. Vasculogenesis and angiogenesis in the early human placenta. Acta Histochem. 2007; 109: 257–265. doi:10.1016/j.acthis.2007.02.008.

Leach L, Babawale MO, Anderson M, Lammiman M. Vasculogenesis, angiogenesis and the molecular organisation of endothelial junctions in the early human placenta. J Vasc Res. 2002; 39: 246–259. doi:10.1159/000063690.

Burton GJ, Charnock-Jones DS, Jauniaux E. Regulation of vascular growth and function in the human placenta. Reproduction 2009; 138: 895–902. doi:10.1530/REP-09-0092.

Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta 2004; 25: 114-126. doi:10.1016/j.placenta.2003.10.009

Charnock-Jones DS, Kaufmann P, Mayhew TM. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta 2004; 25:103–113. doi:10.1016/j.placenta.2003.10.004

Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta 2004; 25: 127–139. doi:10.1016/j.placenta.2003.10.010.

Arroyo JA, Winn VD. Angiogenesis in the IUGR Placenta. Seminars in Perinatology 2008; 32: 172–177. doi:10.1053/j.semperi.2008.02.006.

Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. Journal of Neuro-Oncology 2000; 50: 1–15.

Zhang EG, Burton GJ, Smith SK, Charnock-Jones DS. Placental vessel adaptation during gestation and to high altitude: Changes in diameter and perivascular cell coverage. Placenta 2002; 23: 751-762. doi:10.1016/S0143-4004(02)90856-8.

Baum O, Suter F, Gerber B, Tschanz SA, Buergy R, Blank F et al. VEGF-A promotes intussusceptive angiogenesis in the developing chicken chorioallantoic membrane. Microcirculation 2010; 17(6): 447–457. doi:10.1111/j.1549-8719.2010.00043.x.

Djonov V, Baum O, Burri PH. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res. 2003; 314: 107–117. doi:10.1007/s00441-003-0784-3.

Short RHD. Alveolar epithelium in relation to growth of the lung. Philos Trans R Soc Lond B Biol Sci. 1950; 235(622): 35-86. DOI: 10.1098/rstb.1950.0014.

Ogawa Y. On the fine structural changes of the microvascular beds in skeletal muscle. J Yokohama City Univ Sec Sport Sci Med. 1977; 6: 1–19.

Appell H-J. Morphological studies on skeletal muscle under conditions of high altitude training. Int J Sports Med. 1980; 1: 103–109.

Caduff JH, Fischer LC, Burri PH. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec. 1986; 216: 154–164.

Burri PH, Tarek MR. A novel mechanism of capillary growth in the rat pulmonary microcirculation. The Anatomical Record. 1990; 228: 35–45.

Van Groningen JP, Wenink ACG, and Testers LHM. Myocardial capillaries: Increase in number by splitting of existing vessels. Anat. Embryol. 1991; 184: 65–70.

Patan S, Haenni B, Burri PH. Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane. Anat Embryol. 1993; 187(2): 121-130.

Patan S, Haenni B, Burri PH. Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane (CAM): 1. Pillar formation by folding of the capillary wall. Microvascular Research 1996; 51: 80–98.

Patan S, Haenni B, Burri PH. Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane (CAM) 2. Pillar formation by capillary fusion. Microvascular research 1997; 52: 33–52.

Schlatter P, König MF, Karlsson LM, and Burri PH. Quantitative study of ıntussusceptive capillary growth in the chorioallantoic membrane (CAM) of the chicken embryo. Microvascular research 1997; 54: 65–73.

Djonov V, Schmid M, Tschanz SA, Burri PH. Intussusceptive angiogenesis- Its role in embryonic vascular network formation. Circ Res. 2000; 86: 286–292.

Djonov VG, Galli AB, Burri PH. Intussusceptive arborization contributes to vascular tree formation in the chick chorio-allantoic membrane. Anat Embryol. 2000; 202(5): 347-357.

Patan S, Munn LL, Jain RK. Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: A novel mechanism of tumor angiogenesis. Microvascular research 1996; 51: 260–272.

Nagy JA, Morgan ES, Herzberg KT, Manseau EJ, Dvorak AM. Pathogenesis of ascites tumor growth: Angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining. Cancer Res. 1995; 55: 376–385.

Patan S. Tie1 and Tie2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvascular Research 1998; 21:1–21.

Djonov VG, Kurz H, Burri PH. Optimality in the developing vascular system : branching remodeling by means of ıntussusception as an efficient. Developmental dynamics 2002; 224: 391–402. doi:10.1002/dvdy.10119.

Patan S, Munn LL, Tanda S, Roberge S, Jain RK, Jones RC. Vascular morphogenesis and remodeling in a model of tissue repair: blood vessel formation and growth in the ovarian pedicle after ovariectomy. Circ Res. 2001; 89: 723–731. doi:10.1161/hh2001.097870.

Djonov V, Andres A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microscopy research and technique 2001; 52: 182–189.

Burri PH, Djonov V. Intussusceptive angiogenesis–the alternative to capillary sprouting. Mol Aspects Med. 2002; 23: 1–27. doi:10.1016/S0098-2997(02)00096-1.

Gambino LS, Wreford NG, Bertram JF, Dockery P, Lederman F, Rogers PAW. Angiogenesis occurs by vessel elongation in proliferative phase human endometrium. Human Reproduction 2002; 17: 1199–1206.

Makanya AN, Stauffer D, Ribatti D, Burri PH, Djonov V. Microvascular growth, development, and remodeling in the embryonic avian kidney: the interplay between sprouting and intussusceptive angiogenic mechanisms. Microsc Res Tech. 2005; 66: 275–288. doi:10.1002/jemt.20169.

Kurz H, Burri PH, Djonov VG. Angiogenesis and vascular remodeling by intussusception: from form to function. News Physiol Sci. 2003; 18: 65-70.

Makanya AN, Hlushchuk R, Djonov VG. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 2009; 12: 113–123. doi:10.1007/s10456-009-9129-5.

Mentzer SJ, Konerding M. Intussusceptive angiogenesis: expansion and remodeling of microvascular networks. Angiogenesis 2014; 17: 499–509. doi:10.1007/s10456-014-9428-3.

Demir R, Yaba A, Huppertz B. Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem. 2010; 112: 203–214. doi:10.1016/j.acthis.2009.04.004.

Barut F, Barut A, Gun BD, Kandemir NO, Harma MI, Harma M et al. Intrauterine growth restriction and placental angiogenesis. Diagn Pathol. 2010; 5: 24. doi:10.1186/1746-1596-5-24.

Soma H, Murai N, Tanaka K, Oguro T, Kokuba H, Fujita K et al. Angiogenesis in villous chorangiosis observed by ultrastructural studies. Med Mol Morphol. 2013; 46: 77–85. doi:10.1007/s00795-013-0010-7.

Hlushchuk R, Ehrbar M, Reichmuth P, Heinimann N, Styp-Rekowska B, Escher R et al. Decrease in VEGF expression induces intussusceptive vascular pruning. Arterioscler Thromb Vasc Biol. 2011; 31:2836–2844. doi:10.1161/ATVBAHA.111.231811.

Burri PH, Hlushchuk R, Djonov V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn. 2004; 231: 474–488.