Impact of Sleep, Sleep Loss and Recovery Sleep on Immunity
Abstract
Sleep is a naturally, restorative process, characterized by altered consciousness. Normal sleep and circadian system act as important physiological regulator on immune functions, these regulation mediated by neurotransmitters, hormones and cytokines signals which support relation between the immune system and central nervous system. Various immune parameters in peripheral circulation show Diurnal changes over the day, these changes under effect of the 2 main stress systems, the sympathetic nervous system(SNS) and the hypothalamo pituitary adrenal (HPA) axis, changes occurring in immune parameters over the 24‐h during the sleep–wake cycle categorized to nocturnal Proinflammatory and daytime anti-inflammatory activity. In addition to its effects on cognitive function, compelling evidence links sleep loss to alterations in the neuroendocrine, immune and inflammatory systems. sleep deprivation either in partial sleep deprivation or total sleep deprivation as a stressful status enhances the adrenergic tons that affects innate and adaptive immunity, with increasing susceptibility to infections and immune-related diseases. Several studies have shown negative effects of sleep deprivation on all functions of the body and its effect on the immune system this review aims to explain the changes occurring in immune parameters and inflammatory cytokines over the 24‐h during the normal sleep–wake cycle and during sleep disturbance and benefit of sleep recovery(napping) to recede these physiological changes that resulting from sleep deprivation.
References
Adnane, M., Z. Jiang, and Z. Yan, Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram. Expert Systems with Applications, 2012. 39(1): p. 1401-1413.
Foster, R.G. and L. Kreitzman, The rhythms of life: what your body clock means to you! Experimental physiology, 2014. 99(4): p. 599-606.
Mullington, J. M., Haack, M., Toth, M., Serrador, J. M., & Meier-Ewert, H. K. (2009). Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Progress in cardiovascular diseases, 51(4), 294-302.
Tasali, E., R. Leproult, and K. Spiegel, Reduced sleep duration or quality: relationships with insulin resistance and type 2 diabetes. Progress in cardiovascular diseases, 2009. 51(5): p. 381-391.
Cohen, S., Doyle, W. J., Alper, C. M., Janicki-Deverts, D., & Turner, R. B. (2009). Sleep habits and susceptibility to the common cold. Archives of internal medicine, 169(1), 62-67.
Ferrie, J. E., Shipley, M. J., Cappuccio, F. P., Brunner, E., Miller, M. A., Kumari, M., & Marmot, M. G. (2007). A prospective study of change in sleep duration: associations with mortality in the Whitehall II cohort. Sleep, 30(12), 1659-1666.
Hastings, M., E. Maywood, and A. Reddy, Two decades of circadian time. Journal of neuroendocrinology, 2008. 20(6): p. 812-819.
Besedovsky, L., T. Lange, and J. Born, Sleep and immune function. Pflügers Archiv-European Journal of Physiology, 2012. 463(1): p. 121-137.
. Irwin, M. R., Wang, M., Campomayor, C. O., Collado-Hidalgo, A., & Cole, S. (2006). Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Archives of internal medicine, 166(16), 1756-1762.
Irwin, M., McClintick, J., Costlow, C., Fortner, M., White, J., & Gillin, J. C. (1996). Partial night sleep deprivation reduces natural killer and cellular immune responses in humans. The FASEB journal, 10(5), 643-653.
Faraut, B., Boudjeltia, K. Z., Vanhamme, L., & Kerkhofs, M. (2012). Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery. Sleep medicine reviews, 16(2), 137-149.
Lange, T., S. Dimitrov, and J. Born, Effects of sleep and circadian rhythm on the human immune system. Annals of the New York Academy of Sciences, 2010. 1193(1): p. 48-59.
Besedovsky, H.O. and A. del Rey, Immune-neuro-endocrine interactions: facts and hypotheses. Endocrine reviews, 1996. 17(1): p. 64-102.
Spiegel, K., R. Leproult, and E. Van Cauter, Impact of sleep debt on metabolic and endocrine function. The lancet, 1999. 354(9188): p. 1435-1439.
Elenkov, I. J., Kvetnansky, R., Hashiramoto, A., Bakalov, V. K., Link, A. A., Zachman, K., ... & Gold, P. W. (2008). Low-versus high-baseline epinephrine output shapes opposite innate cytokine profiles: presence of Lewis-and Fischer-like neurohormonal immune phenotypes in humans?. The Journal of Immunology, 181(3), 1737-1745.
Lange, T., Dimitrov, S., Fehm, H. L., & Born, J. (2006). Sleep-like concentrations of growth hormone and cortisol modulate type1 and type2 in-vitro cytokine production in human T cells. International immunopharmacology, 6(2), 216-225.
Reis, E. S., Lange, T., Köhl, G., Herrmann, A., Tschulakow, A. V., Naujoks, J., ... & Köhl, J. (2011). Sleep and circadian rhythm regulate circulating complement factors and immunoregulatory properties of C5a. Brain, behavior, and immunity, 25(7), 1416-1426.
Blask, D.E., Melatonin, sleep disturbance and cancer risk. Sleep medicine reviews, 2009. 13(4): p. 257-264.
Esquifino, A. I., Alvarez, M. P., Cano, P., Chacon, F., Toso, C. F. R., & Cardinali, D. P. (2004). 24-hour pattern of circulating prolactin and growth hormone levels and submaxillary lymph node immune responses in growing male rats subjected to social isolation. Endocrine, 25(1), 41-48.
Radogna, F., M. Diederich, and L. Ghibelli, Melatonin: a pleiotropic molecule regulating inflammation. Biochemical pharmacology, 2010. 80(12): p. 1844-1852.
Petrovsky, N., Towards a unified model of neuroendocrine–immune interaction. Immunology and cell biology, 2001. 79(4): p. 350-357.
Hermann, C., von Aulock, S., Dehus, O., Keller, M., Okigami, H., Gantner, F., ... & Hartung, T. (2006). Endogenous cortisol determines the circadian rhythm of lipopolysaccharide‐but not lipoteichoic acid‐inducible cytokine release. European journal of immunology, 36(2), 371-379.
Dimitrov, S., Lange, T., Benedict, C., Nowell, M. A., Jones, S. A., Scheller, J., ... & Benedict, C. (2006). Sleep enhances IL-6 trans-signaling in humans. The FASEB journal, 20(12), 2174-2176.
Krueger, J.M., J.F. Obál, and J. Fang, Humoral regulation of physiological sleep: cytokines and GHRH. Journal of sleep research, 1999. 8: p. 53-59.
Kelley, K.W., D.A. Weigent, and R. Kooijman, Protein hormones and immunity. Brain, behavior, and immunity, 2007. 21(4): p. 384-392.
Hattori, N., Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system. Growth Hormone & IGF Research, 2009. 19(3): p. 187-197.
Haus, E. and M.H. Smolensky, Biologic rhythms in the immune system. Chronobiology international, 1999. 16(5): p. 581-622.
Eng, F.L.M. and H. Moldofsky, The relationship of lymphocytes in blood and in lymph to sleep/wake states in sheep. Sleep, 2000. 23(2): p. 1.
Bonacho, M. G., Cardinali, D. P., Castrillon, P., Cutrera, R. A., & Esquifino, A. I. (2001). Aging-induced changes in 24-h rhythms of mitogenic responses, lymphocyte subset populations and neurotransmitter and amino acid content in rat submaxillary lymph nodes during Freund's adjuvant arthritis. Experimental gerontology, 36(2), 267-282.
Cox, J.H. and W. Ford, The migration of lymphocytes across specialized vascular endothelium: IV. Prednisolone acts at several points on the recirculation pathways of lymphocytes. Cellular immunology, 1982. 66(2): p. 407-422.
Smaniotto, S., Ribeiro-Carvalho, M. M., Dardenne, M., Savino, W., & de Mello-Coelho, V. (2004). Growth hormone stimulates the selective trafficking of thymic CD4+ CD8–emigrants to peripheral lymphoid organs. Neuroimmunomodulation, 11(5), 299-306.
Lange, T., Dimitrov, S., Fehm, H. L., Westermann, J., & Born, J. (2006). Shift of monocyte function toward cellular immunity during sleep. Archives of internal medicine, 166(16), 1695-1700.
Parham, P., Taking license with natural killer cell maturation and repertoire development. Immunological reviews, 2006. 214(1): p. 155-160.
Suzuki, S., Toyabe, S., Moroda, T., Tada, T., Tsukahara, A., Iiai, T., ... & Abo, T. (1997). Circadian rhythm of leucocytes and lymphocyte subsets and its possible correlation with the function of the autonomic nervous system. Clinical & Experimental Immunology, 110(3), 500-508.
Campbell, J. P., Riddell, N. E., Burns, V. E., Turner, M., van Zanten, J. J. V., Drayson, M. T., & Bosch, J. A. (2009). Acute exercise mobilises CD8+ T lymphocytes exhibiting an effector-memory phenotype. Brain, behavior, and immunity, 23(6), 767-775.
Benschop, R.J., M. Rodriguez-Feuerhahn, and M. Schedlowski, Catecholamine-induced leukocytosis: early observations, current research, and future directions. Brain, behavior, and immunity, 1996. 10(2): p. 77-91.
Born, J., Lange, T., Hansen, K., Mölle, M., & Fehm, H. L. (1997). Effects of sleep and circadian rhythm on human circulating immune cells. The Journal of Immunology, 158(9), 4454-4464.
Warnock, R. A., Askari, S., Butcher, E. C., & Von Andrian, U. H. (1998). Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. Journal of Experimental Medicine, 187(2), 205-216.
Dimitrov, S., T. Lange, and J. Born, Selective mobilization of cytotoxic leukocytes by epinephrine. The journal of immunology, 2010. 184(1): p. 503-511.
Molina, P.E., Neurobiology of the stress response: contribution of the sympathetic nervous system to the neuroimmune axis in traumatic injury. Shock, 2005. 24(1): p. 3-10.
Leposavić, G., Pilipović, I., Radojević, K., Pešić, V., Perišić, M., & Kosec, D. (2008). Catecholamines as immunomodulators: a role for adrenoceptor-mediated mechanisms in fine tuning of T-cell development. Autonomic Neuroscience, 144(1-2), 1-12.
Marchetti, B. L. A. N. C. A., Morale, M. C., Paradis, P. I. E. R. R. E., & Bouvier, M. I. C. H. E. L. (1994). Characterization, expression, and hormonal control of a thymic beta 2-adrenergic receptor. American Journal of Physiology-Endocrinology and Metabolism, 267(5), E718-E731.
Shakhar, G. and S. Ben-Eliyahu, In vivo β-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. The Journal of Immunology, 1998. 160(7): p. 3251-3258.
Steinman, L., Elaborate interactions between the immune and nervous systems. Nature immunology, 2004. 5(6): p. 575.
Kioussis, D. and V. Pachnis, Immune and nervous systems: more than just a superficial similarity? Immunity, 2009. 31(5): p. 705-710.
Dustin, M.L. and D.R. Colman, Neural and immunological synaptic relations. Science, 2002. 298(5594): p. 785-789.
Diekelmann, S. and J. Born, The memory function of sleep. Nature Reviews Neuroscience, 2010. 11(2): p. 114.
Dinges, D. F., Douglas, S. D., Hamarman, S., Zaugg, L., & Kapoor, S. (1995). Sleep deprivation and human immune function. Advances in neuroimmunology, 5(2), 97-110.
Wilder-Smith, A., Mustafa, F. B., Earnest, A., Gen, L., & Macary, P. A. (2013). Impact of partial sleep deprivation on immune markers. Sleep medicine, 14(10), 1031-1034.
Hoffman, J. A., Weinberg, K. I., Azen, C. G., Horn, M. V., Dukes, L., Starnes, V. A., & Woo, M. S. (2004). Human leukocyte antigen‐DR expression on peripheral blood monocytes and the risk of pneumonia in pediatric lung transplant recipients. Transplant infectious disease, 6(4), 147-155.
Faraut, B., Boudjeltia, K. Z., Dyzma, M., Rousseau, A., David, E., Stenuit, P., ... & Kerkhofs, M. (2011). Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction. Brain, behavior, and immunity, 25(1), 16-24.
Boudjeltia, K. Z., Faraut, B., Stenuit, P., Esposito, M. J., Dyzma, M., Brohée, D., ... & Kerkhofs, M. (2008). Sleep restriction increases white blood cells, mainly neutrophil count, in young healthy men: a pilot study. Vascular health and risk management, 4(6), 1467.
Palmblad, J., Petrini, B., Wasserman, J., & Åkerstedt, T. (1979). Lymphocyte and granulocyte reactions during sleep deprivation. Psychosomatic Medicine.
Dinges, D. F., Douglas, S. D., Zaugg, L., Campbell, D. E., Mcmann, J. M., Whitehouse, W. G., ... & Orne, M. T. (1994). Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation. The Journal of clinical investigation, 93(5), 1930-1939.
Frey, D.J., M. Fleshner, and K.P. Wright Jr, The effects of 40 hours of total sleep deprivation on inflammatory markers in healthy young adults. Brain, behavior, and immunity, 2007. 21(8): p. 1050-1057.
Shearer, W. T., Reuben, J. M., Mullington, J. M., Price, N. J., Lee, B. N., Smith, E. B., ... & Dinges, D. F. (2001). Soluble TNF-α receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. Journal of Allergy and Clinical Immunology, 107(1), 165-170.
Haack, M., E. Sanchez, and J.M. Mullington, Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep, 2007. 30(9): p. 1145-1152.
Vgontzas, A. N., Pejovic, S., Zoumakis, E., Lin, H. M., Bixler, E. O., Basta, M., ... & Chrousos, G. P. (2007). Daytime napping after a night of sleep loss decreases sleepiness, improves performance, and causes beneficial changes in cortisol and interleukin-6 secretion. American Journal of Physiology-Endocrinology and Metabolism.
Meier-Ewert, H. K., Ridker, P. M., Rifai, N., Regan, M. M., Price, N. J., Dinges, D. F., & Mullington, J. M. (2004). Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. Journal of the American College of Cardiology, 43(4), 678-683.
Irwin, M.R., C. Carrillo, and R. Olmstead, Sleep loss activates cellular markers of inflammation: sex differences. Brain, behavior, and immunity, 2010. 24(1): p. 54-57.
Redwine, L., Hauger, R. L., Gillin, J. C., & Irwin, M. (2000). Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. The Journal of Clinical Endocrinology & Metabolism, 85(10), 3597-3603.
Spiegel, K., J.F. Sheridan, and E. Van Cauter, Effect of sleep deprivation on response to immunizaton. Jama, 2002. 288(12): p. 1471-1472.
Dhabhar, F.S., Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation, 2009. 16(5): p. 300-317.
Leproult, R., Copinschi, G., Buxton, O., & Van Cauter, E. (1997). Sleep loss results in an elevation of cortisol levels the next evening. Sleep, 20(10), 865-870.
Brooks, A. and L. Lack, A brief afternoon nap following nocturnal sleep restriction: which nap duration is most recuperative? Sleep, 2006. 29(6): p. 831-840.
Mednick, S., K. Nakayama, and R. Stickgold, Sleep-dependent learning: a nap is as good as a night. Nature neuroscience, 2003. 6(7): p. 697.
Vgontzas, A. N., Zoumakis, E., Bixler, E. O., Lin, H. M., Follett, H., Kales, A., & Chrousos, G. P. (2004). Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. The Journal of Clinical Endocrinology & Metabolism, 89(5), 2119-2126.
Loimaala, A., Rontu, R., Vuori, I., Mercuri, M., Lehtimäki, T., Nenonen, A., & Bond, M. G. (2006). Blood leukocyte count is a risk factor for intima-media thickening and subclinical carotid atherosclerosis in middle-aged men. Atherosclerosis, 188(2), 363-369.
Fehr, J. and H.C. Grossmann, Disparity between circulating and marginated neutrophils: evidence from studies on the granulocyte alkaline phosphatase, a marker of cell maturity. American journal of hematology, 1979. 7(4): p. 369-379.
Athens, J. W., Haab, O. P., Raab, S. O., Mauer, A. M., Ashenbrucker, H., Cartwright, G. E., & Wintrobe, M. M. (1961). Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. The Journal of clinical investigation, 40(6), 989-995.
Späth-Schwalbe, E., Uthgenannt, D., Voget, G., Kern, W., Born, J., & Fehm, H. L. (1993). Corticotropin-releasing hormone-induced adrenocorticotropin and cortisol secretion depends on sleep and wakefulness. The Journal of Clinical Endocrinology & Metabolism, 77(5), 1170-1173.
Irwin, M., Thompson, J., Miller, C., Gillin, J. C., & Ziegler, M. (1999). Effects of sleep and sleep deprivation on catecholamine and interleukin-2 levels in humans: clinical implications. The Journal of Clinical Endocrinology & Metabolism, 84(6), 1979-1985.