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Interactive Pharmacokinetics: A Software for Discovery, Analysis, and Simulation

interaktif Farmakokinetik: Kesif, Analiz ve Simiilasyon Yazilimi
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Department of Medical Pharmacology, Gazi University Faculty of Medicine, Ankara, Turkiye

ABSTRACT

Objective: We aimed to develop “interactive pharmacokinetics (PK)”,
an open-source, Python-based software package with a user-friendly
graphical user interface. Our main goal was to overcome the cost
and complexity barriers to industry-standard PK modeling tools and
to facilitate the practical application of theoretical PK principles for
students and researchers.

Methods: The software employs one, two, and three-compartment
models, solving systems of differential equations to simulate drug
concentration-time profiles. Parameter estimation is performed using
non-linear optimization algorithms to minimize the sum of squared
logarithmic errors. The platform is developed in Python, using NumPy
and SciPy for core computations and the multiprocessing library for
parallel processing of population data.

Results: A fully integrated, functional software application with a user-
friendly graphical user interface was created. The platform enables
users to run simulations and visualize results, including key parameters
suchasC__and T__.It performs de novo parameter estimation from
patient data for one-compartment models and generates novel two-
and three-compartment models using a priori data.

Conclusion: The software provides an accessible, no-cost tool for
fundamental PK simulation and modeling. It serves as both a valuable
pedagogical instrument for pharmacology education and a capable
platform for preliminary research, particularly in resource-limited
environments. Future work should focus on comprehensive validation
against established software.

Keywords: Pharmacokinetic modelling, scientific software, drug
development, clinical research

0z

Amag: Kullanici dostu bir grafiksel kullanici arayliziine sahip, agik
kaynak kodlu ve Python tabanli bir yazihm paketi olan “interaktif
farmakokinetiki (FK)” gelistirmeyi amagladik. Temel hedefimiz,
endustri standardi FK modelleme araglarina erisimdeki maliyet ve
karmasiklik engellerini agsmak; 6grenciler ve arastirmacilar igin teorik
FK prensiplerinin pratik uygulamasini kolaylastirmaktir.

Yontemler: Yazilim, ilag konsantrasyon-zaman profillerini simiile etmek
icin diferansiyel denklem sistemlerini gézerek bir, iki ve tig kompartmanh
modelleri kullanmaktadir. Parametre tahmini, logaritmik hata kareleri
toplamini en aza indirmek icin dogrusal olmayan optimizasyon
algoritmalari kullanilarak gergeklestirilir. Platform; temel hesaplamalar
icin NumPy ve SciPy kitiiphanelerini, poptlasyon verilerinin paralel
islenmesi igin ise multiprocessing kutlphanesini kullanarak Python
dilinde gelistirilmistir.

Bulgular: Kullanicidostu bir grafik kullaniciarayiiziine sahip, tam entegre
ve islevsel bir yaziim uygulamasi olusturuldu. Platform, kullanicilarin
similasyonlar yiritmesineve C__ileT__ gibi temel parametreler dahil
olmak Uzere sonuglari gorsellestirmesine olanak tanimaktadir. Yazilm,
tek kompartmanl modeller igin hasta verilerinden sifirdan parametre
tahmini gerceklestirebilmekte ve dnceden saglanan verileri kullanarak
yeni iki ve Gig kompartmanli modelleri olusturabilmektedir.

Sonug: Bu yazilim, temel FK simiilasyonu ve modellemesi igin erisilebilir
ve Ucretsiz bir arag sunmaktadir. Arag, 6zellikle kaynaklarin kisitl
oldugu ortamlarda, hem farmakoloji egitimi icin degerli bir pedagojik
enstriman hem de 6n arastirmalar igin yetenekli bir platform goérevi
gormektedir. Gelecekteki calismalar, kabul gérmis yazilimlara karsi
kapsamli bir validasyon gergeklestiriimesine odaklanmalidir.

Anahtar Sozciikler: Farmakokinetik modelleme, bilimsel yazilm, ilag
gelistirme, klinik arastirma
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INTRODUCTION

Pharmacokinetics (PK) is a fundamental discipline of pharmacology
that studies the disposition of a drug in the body, encompassing the
processes of absorption, distribution, metabolism, and excretion
(ADME). PK modeling, in turn, utilizes a mathematical framework
to define and predict these ADME processes. These models provide
key information on a drug’s efficacy and safety by predicting its
time-concentration profile within the body in silico and are used to
optimize therapeutic outcomes preclinically (1).

The model-based drug development (MBDD) approach, conducted
through PK modeling, aims to reduce the high failure rates in
clinical trials by providing better predictions about drug exposure-
response relationships. Another important aspect of this approach
is its acceptance not only by scientists but also by regulatory bodies.
Leading regulatory agencies like the US Food and Drug Administration
and the European Medicines Agency actively encourage the use of
MBDD and view it as a critical component of marketing authorization
applications (2).

The growing importance of PK modeling has led to the development
of various specialized software platforms designed to perform these
analyses. This ecosystem consists of both commercial and open-
source tools, each specializing in specific types of analysis and is
adapted to different user profiles.

Non-linear mixed-effects modeling (NONMEM) is a software package
that has long been considered the gold standard for population
PK/pharmacodynamic analyses. Its primary function is to analyze
typically sparse data from patient populations to investigate the
sources of variability in drug response (3).

Physiologically based PK (PBPK) modeling is an approach that
mechanistically predicts ADME properties based on fundamental
physiological and biochemical principles. The Simcyp simulator
stands out as the most prominent platform in this field. It is known
for its comprehensive libraries of diverse virtual populations and its
ability to predict complex scenarios, such as drug-drug interactions
(4).

Even though the current landscape of PK modeling software rests
on a strong foundation, certain challenges and limitations present
significant opportunities for developing new tools. These challenges
include a lack of usability, accessibility, and integration with modern
scientific computing platforms. All of these are directly linked to a
broader issue encountered in pharmacology education. Students
and young researchers find it difficult to translate theoretical
principles into practical applications, a process known as “contextual
learning transfer” (5). Software with complex interfaces deepens
this educational gap and makes it difficult for the next generation of
scientists to adopt these critical methods (6).

All the dominant platforms that are considered industry standards
are commercial products. This restricts access for academic
institutions, small biotechnology companies, and, in particular,
researchers in low- and middle-income countries.

In this study, we developed an open-source, Python-based software
package named “interactive PKs” for PK modeling and simulation
to address these challenges. Our goal is to provide a powerful
experimental tool open to further development by experienced
pharmacologists and an intuitive learning platform for students and
researchers new to the field.
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MATERIALS AND METHODS

The software developed in this study was designed as an integrated
platform that combines two fundamental components of PK
analysis—simulation and parameter optimization—on a modern
computational infrastructure.

Libraries Used

The software is based on Python 3.13, chosen for its rich ecosystem
of scientific libraries. Tkinter, Python’s standard interface library, was
used to provide a desktop user experience and to make the software
easily accessible to a wide audience. Two critical functions at the
core of the software—solving differential equations and non-linear
optimization—are handled by the NumPy and SciPy libraries. The
industry-standard Matplotlib library was used to generate simulation
results and graphics.

The multiprocessing library was employed to accelerate
computationally intensive tasks, such as parameter estimation from
population data, via processor-level parallelism.

Simulation

The software used a compartmental modeling approach to
simulate the drug concentration-time profiles in the body. One-,
two, and three-compartment models were represented as systems
of differential equations describing the movement of the drug
within the body. The equations used were based on differential
pharmacological equations and on compartment-based PK models
presented in Chapter 3 of Oguz Kayaalp’s Medical Pharmacology,
14 edition (7).

HOE f—D<k—a> (e ket — g~kat)

va \ka — ke

Equation 1. Basic concentration-time equation

The concentration equation for the central compartment was
linked to those of the peripheral compartments through the
intercompartmental transfer constants Kk, k21, k13, and k31.
Parameters for the percentages of free and bound drug were
determined for each compartment.

The compartmental relationships described by differential equations
were simplified by reducing the number of compartments. A
three-compartment model was created first, followed by two-
compartment and single-compartment models.

The fundamental operating mechanism of the software is based on
object-based and event-based programming, combined with solving
differential equations. The software uses a numerical solver (solve_
ivp from SciPy) to simulate the process over small time intervals.

The solver works by following these steps:

1. Starts at time O: It knows the initial drug concentrations in each
compartment.

2. Rate calculation: It uses differential equations to compute the
instantaneous rate of change.

3. Steps forward: It takes a small “time step” (e.g., 1 minute) and
determines the updated amount of drug in each compartment

based on the calculated rates.

4. Repeats: Steps 2 and 3 are repeated until the end of the simulation
period.
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This process creates the concentration-time curve point by point. At
the end of the process, an interactive concentration-time curve is
displayed.

Parameter Estimation

In addition to simulations, the software includes parameter-
estimation functions that predict key PK parameters [k, k_, volume
of distribution (V ), etc.] from patient concentration-time data. This
process is treated as a non-linear optimization problem.

The objective of the optimization algorithms is to minimize the
difference between model-predicted concentrations (Cpred) and
observed concentrations (C_ ). To achieve this, our software uses
the sum of squared logarithmic errors as its primary function. This
function is expressed mathematically in equation 2.

Error = Z(log(cobs) - log(cpred))z

Equation 2. Sum of squared logarithmic errors

The aim of the optimization process is to find the model parameters
that make the predicted curve match the actual patient data as
closely as possible.

1. Initial Estimate: The process begins with an estimate of the
parameters.

2. Simulation: Using these estimated parameters, a simulation is run
to generate a predicted concentration curve.

3. Error Calculation (Loss Function): The predicted curve is compared
with the actual patient data points to compute a single error (loss)
value.

4. Adjust and Repeat: An optimization function (scipy.optimize.
minimize) adjusts the parameter estimates to reduce the error. The
gradient-based trust-constr and L-BFGS-B optimization algorithms
are used to optimize this function. This “simulate-compare-adjust”
loop is repeated until the error can no longer be reduced. The final
parameters are those that produce the best-fitting curve.

When working with population data, calculating the error function
for each individual can significantly slow processing. To overcome
this computational bottleneck, our software leverages the
multiprocessing library. This method allows for parallel computations
on multiple processor cores. The goal of this approach is to make the
analysis of large datasets more practical by significantly accelerating
the optimization process compared with single-core processing.

Using a parameter-estimation approach, four functions were
integrated into the software.

1. Creation of single-compartment parameters from real patient
data: users can input patient concentration-time data to determine
parameters for a one-compartment analysis.

2. Assessment of the fit of existing patient data to pre-existing
two- or three-compartment model data: after entering patient
concentration-time data, the system evaluates how well the data fit
an a priori reference model.

3. New models are developed from existing patient concentration-
time data using a pre-existing two- or three-compartment model:
users enter the concentration-time data, and a new model is created
by optimization against an a priori reference model.

4. Generation of two-compartment model parameters from a single-
compartment model: unlike the first three methods, this function

uses both optimization and a heuristic approach to generate those
parameters.

Attempt to Estimate Two-Compartment Model Data from
One-Compartment Model Data

Attempting to generate parameters of a two-compartment model
from one-compartment data represents the most experimental
aspect of our software. For this purpose, a heuristic equation was
developed.

k |
(o ()

Equation 3. Heuristic equation for estimating two-compartment
parameters from single-compartment parameters. (Equation
Parameters: K, Elimination constant from the one-compartment
model; V: Tissue compartment volume; Vp: Plasma compartment
volume; V: Virtual distribution volume; Kp: Ratio of free drug ratio in
plasma to free drug ratio in tissue; R: Ratio of V, to (Vc+Vp); e: Euler’s

number).

This equation generates a two-compartment model from
single-compartment data, using a formula derived from several
assumptions. The known variables in this equation are manually
entered values for V_ and kelcomp the free drug fraction in plasma,
and the calculated values for V_and v, based on body weight. The
goal is to obtain an approximate value of k , using these values.

We can explain this equation step-by-step as follows:

1. The calculation of [(VC/Vp)*Kp] in the middle of the equation
involves dividing the amounts of free drug in the two compartments.
The purpose of this calculation is to determine approximately
whether the drug is more likely to move from plasma to tissue or
from tissue to plasma. At steady state, we obtain the ratio of the
total drug amount in the tissue compartment to that in the central
compartment. This combined ratio is used to establish a balance
between k, (the rate of transfer from plasma to tissue) and k,,
(the rate of return from tissue to plasma). The Kp value, which is
calculated based on the drug-binding rate in tissue, is derived from
the equation V, = V) + [V.* (plasma free drug fraction/tissue free
drug fraction)]. This formula is based on the assumption that “as the
free drug fraction in plasma increases and the free fraction in tissue
decreases, the drug is expected to bind more extensively in tissue,
thereby increasing the V .

2.Thevalue of Ris calculated by dividing the virtual V , already known
from the single-compartment model, by the total physiological
volume (Vp + V), which is calculated from body weight. This ratio
serves as an approximate measure of how much of a drug is retained
in the tissues. For example, if the ratio is 5, it means the drug behaves
as if it’s distributed in a volume five times the physical volume.
Therefore, the calculation e®9"25 suggests that, as R exceeds 1, the
accumulation rate in the tissue will increase and k , will increase
proportionally as well.

3. However, based on the kelcomp/R2 calculation in the equation, the
drug’s elimination must decrease in proportion to R2. The drug’s
tendency to remain in the plasma decreases as R increases. Making
k,, proportional to kelcomp in this equation ensures the consistency
of the two-compartment model. Assuming that a rapidly eliminated
drug also distributes rapidly and that a slowly eliminated drug
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distributes slowly, a more balanced model can be created. If there
were no such relationship between k, and kelkomp, it would be
possible to produce strange and illogical models in which a drug is
eliminated very quickly but enters tissues extremely slowly.

This equation is merely a heuristic estimate and cannot directly
simulate real-life situations. We observed that attempts to use this
approach were unsuccessful. Two-compartment model predictions
generated by this equation were unsuccessful.

Subsequently, the curve estimated by this equation was considered
a hypothetical model. The single-compartment and the hypothetical
two-compartment model curves were optimized relative to one
another. When an optimization approach was applied to the two
curves, substantially more successful estimation curves were
obtained. The partial success achieved at this stage was retained in
the software as a basis for further experimentation and development.
This is currently at an experimental stage and requires further
mathematical development and testing in a real-world environment.

Finally, all the simulation and parameter estimation functions
within the software have been integrated and presented to the user
through a user-friendly interface.

This research focuses on the design and implementation of an open-
source computational tool for PK modeling. The study methodology
relies entirely on mathematical algorithms and theoretical data
processing. As no human subjects, animal models, or biological
samples were utilized or collected during the development and
testing of this software, no ethical approval was sought or required
for this work.

RESULTS

Based on the approaches applied, an integrated environment with a
user-friendly interface was created. When the program is launched,
the screen shown in Figure 1 appears.

The first feature on the interface is a control for selecting the number
of compartments. Users can choose among one-, two-, and three-
compartment models (Figure 1a). This is followed by the section for
entering model parameters (Figure 1b). For the single-compartment
model, the required parameters are the virtual V,, plasma protein
binding rate, simulation duration, simulation time step (calculation
frequency), and steady-state concentration tolerance, which
determines the precision of the steady-state concentration. The
model-parameter screen shows minor differences between the
two- and three-compartment models. For instance, in the two-
compartment model, the user must determine the transfer
coefficients from plasma to tissue (k,,) and from tissue to plasma
(k,,), and the percentage of protein binding in the tissue (Figure 2).

Next, the user is prompted to select the route of administration,
with options for oral, IV bolus, and IV infusion. Here, the user also
determines whether elimination will follow first-order or zero-order
kinetics (Figure 1c).

In the block below, the elimination parameters are entered according
to the chosen elimination type. If first-order kinetics is selected,
the elimination constant (K ) is required; if zero-order kinetics is
selected, the user must provide the V__ and K_ values (Figure 1d).

The next block, which is optional, is for a loading dose. If this option is
selected, the user is prompted to provide the loading dose (Figure 1e).
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Finally, the user is prompted to specify the dose, number of doses,
dosing interval, absorption rate, intestinal bioavailability, and hepatic
bioavailability (Figure 1f).

After the “start simulation” button is clicked, a concentration-time
graph will be generated (Figure 3). Additionally, the estimated half-
life, T, C_ . clearance, steady-state concentration, and time to
reach the steady-state concentration will be calculated (Figure 1g).

Additionally, the software’s capabilities extend beyond mere
visualization of differential equations.

De Novo Estimation Function from Patient Data

The software can create population data and estimate K_and K_ using
only patient blood concentration-time data and the provided volume
of distribution and plasma protein-binding rates. Furthermore, it
can generate concentration-time population curves based on these
parameter estimates.

To use this function, the user inputs the patient number, dose,
blood sampling time, and concentration values into the interface
(Figure 4). The system then iteratively applies optimization
algorithms. This process can take a relatively long time (30 minutes
to 1 hour), depending on how close the initial estimates are to the
correct values. Following this process, goodness-of-fit graphs can
be generated at the user’s request. The operation concludes with
the estimation of model parameters and the visualization of the
predicted concentration—time profile based on these parameters
(Figure 5).

Estimation from Patient Data: Two- and Three-Compartment
Models

Because of the large number of unknown variables in the two- and
three-compartment models, new values could only be obtained
through optimization based on a previously prepared model.
Therefore, an a priori model must first be entered into the system.
The system then attempts to determine new parameter estimates for
these patients using the patient concentration-time data provided to
the software (Figure 6).

This method not only builds a new model from an a priori model
but also evaluates how well the entered data fit the pre-existing
predictive model.

Estimation from Single-Compartment Model Data to Two-
Compartment Model Parameters

When the estimated curve resulting from the heuristic equation
was treated as a hypothetical model, the single-compartment
and hypothetical two-compartment model curves were optimized
relative to each other. It was observed that optimizing the fit
between the two curves produced substantially more accurate
prediction curves than the initial attempt (Figure 7). Here, the
criterion for success was the similarity between the curve of the
single-compartment model and the newly created optimization
curve; no mathematical similarity analysis was conducted. This point
is still in the experimental stage and needs to be further developed
mathematically and tested in a real-world environment.
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Figure 1. Main User Interface. (a) Selection of the number of compartments. (b) Model parameters. (c) Selection of the drug administration route and
elimination type. (d) Determination of elimination parameters. (e) Selection of a loading dose. (f) Dose parameters, absorption rate, and bioavailability.

(g) Calculated parameters.
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Figure 2. View in a two-compartment model.
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Figure 3. Concentration-time graph resulting from a two-compartment model calculation (the dark blue line: total plasma concentration. The light blue
line: Free plasma concentration. The dark green line: total tissue concentration. The light green line: free tissue concentration).
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Figure 5. Visualization of the results from the de novo estimation function using patient data.
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a Pharmacokinetic Model: Concentration-Time Profile
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Figure 6. Visualization of the new concentration-time model estimated from patient data in a two-compartment modelg (a: the “x” marks show the
patient data, while the dashed red line represents the new model curve created through optimization; b: the red dots indicate the new patient data

entered, and the blue line shows the estimated model curve).
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Figure 7. Estimation of two-compartment model parameters from single-compartment model data. (a) The dashed blue line represents the model
resulting from the heuristic formula, the black line shows the single-compartment model, and the red line is the curve of the common model that emerged
from optimization. (b) Panel b shows the new parameters created through optimization being tested in a two-compartment model simulation.

DISCUSSION

In this study, a software tool was developed to simulate and predict
fundamental PK analyses. This software platform was designed to
meet the needs of both educational and research fields.

The software interface is the most crucial element for ensuring
accessibility and ease of use, which is our claim. In this context,
the software’s features should be regarded as a curated set of
the most fundamental and frequently used tools in PKs. This
highlights our strategic approach during the design phase. Rather
than competing with the highly specializedand comprehensive
features of commercial giants, our study focused on addressing
the core curriculum of PK education and the fundamental needs of
exploratory research. Therefore, the success of this work should be
evaluated not by “what it can do”, but by “whom it empowers”.

Historically, the field of pharmacometric modeling has been
dominated by powerful yet costly commercial software such as
NONMEM and Simcyp. While these tools are considered industry
standards, they create significant financial barriers. This makes
them largely inaccessible to academic institutions, researchers in
low-income countries, and small-scale companies. The open-source,
free nature of the developed software is intended to completely
eliminate this financial obstacle.

A second obstacle is the complexity and steep learning curve. Tools
such as NONMEM are command-line-based and require in-depth
knowledge of specialized programming languages or complex

control files for effective use (8). In contrast, our software’s user-
friendly graphical interface removes this barrier, allowing users to
focus on PK principles without struggling with the software.

However, strong alternatives exist within the open-source domain.
The most prominent of these is the nimixr2 package, which is based
on the R programming language. nlmixr2 is a code-based solution
that requires programming proficiency (9). Additionally, user-
interface add-ons like shinyMixR, which have been developed for
this package, indicate a need for user-friendly platforms within this
ecosystem (10).

Basing this software on Python placesitin a unique position regarding
its linguistic foundation. While R has deep roots in statistics and
bioinformatics, Python is increasingly the dominant language for
scientific computing, data science, and machine learning. Its larger
talent pool and ability to integrate more smoothly into large-scale
corporate or web-based workflows make Python an attractive choice
for modern scientific software development (11). Consequently, this
software is positioned not only as a PK tool but also as a potential
component of a broader Python-based scientific workflow.

The software’s value should also be assessed by its potential to
transform how PKs is taught and applied. Its accessibility and
ease of use have the potential to foster pedagogical innovation in
education and to provide equal opportunities for researchers. The
software transforms abstract equations into an interactive visual
experience. It allows learners to change parameters such as dose,
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clearance, and volume of distribution and instantly see the results
on the concentration-time curve, providing a dynamic, intuitive way
to learn how these concepts are interrelated. This type of hands-
on, simulation-based learning is a powerful active learning strategy
that can increase understanding and retention more effectively than
static textbook examples. Therefore, it can be confidently stated that
this tool can make the learning process more engaging and effective
by allowing students to explore theory in a gamified manner and to
observe the results immediately.

Study Limitations

The software is more than a simulator; it is also a predictive tool
that incorporates several optimization functions, some of which are
more effective, while others remain experimental. At this point, it is
important to highlight the effort required to calculate the transition
from a single-compartment model to a two-compartment model.
Initially, a heuristic equation-based approach was attempted but
proved unsuccessful. This failure is, in itself, a significant finding
because it provides evidence of the non-linear nature of the
relationship between single-compartment and two-compartment
model parameters. While the second approach, based on
optimization between two curves, was more successful, this feature
is not yet mature.

On the other hand, the software’s current capabilities must be
evaluated within certain limitations. One of the most significant
limitations is its focus on standard compartmental models in its
current form. This excludes more complex and mechanistic modeling
paradigms, such as PBPKs, which play a central role in modern drug
development. This situation defines the boundaries of the software’s
current applicability.

Another critical limitation is the lack of a comprehensive official
validation study. While the software is functional, its outputs have
not yet been compared with those of established software or with
standard reference datasets accepted by regulatory agencies. This
step is indispensable for the software to be accepted as a reliable
research tool. This validation is essential for adoption of the software
by the scientific community and should be the top development
priority for future work.

CONCLUSION

In this study, new open-source PK-modeling software built within
the Python ecosystem was developed. The platform offers a package
of fundamental simulation and parameter estimation tools within an
accessible graphical user interface.

The primary and most novel contribution of this work is not the
invention of new modeling algorithms. Instead, existing numerical
methods have been holistically integrated into a platform that
aims to overcome critical barriers—such as cost, complexity, and
usability—that limit access to industry-standard tools. This approach
is intended to make PK modeling capabilities accessible to a wider
audience.

In doing so, the study makes a dual contribution to the field: on
the one hand, it provides a powerful pedagogical tool to bridge the
gap between theory and practice in pharmacology education, and
on the other hand, it empowers researchers in resource-limited
environments with a capable platform for preliminary modeling
and hypothesis testing. We also believe that our work will make
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significant contributions to postgraduate and lifelong learning in
pharmacology. These capabilities require further improvement and
validation through future development efforts.
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