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ABSTRACT ÖZ

Objective: We aimed to develop “interactive pharmacokinetics (PK)”, 
an open-source, Python-based software package with a user-friendly 
graphical user interface. Our main goal was to overcome the cost 
and complexity barriers to industry-standard PK modeling tools and 
to facilitate the practical application of theoretical PK principles for 
students and researchers.
Methods: The software employs one, two, and three-compartment 
models, solving systems of differential equations to simulate drug 
concentration-time profiles. Parameter estimation is performed using 
non-linear optimization algorithms to minimize the sum of squared 
logarithmic errors. The platform is developed in Python, using NumPy 
and SciPy for core computations and the multiprocessing library for 
parallel processing of population data.
Results: A fully integrated, functional software application with a user-
friendly graphical user interface was created. The platform enables 
users to run simulations and visualize results, including key parameters 
such as Cmax and Tmax. It performs de novo parameter estimation from 
patient data for one-compartment models and generates novel two- 
and three-compartment models using a priori data.
Conclusion: The software provides an accessible, no-cost tool for 
fundamental PK simulation and modeling. It serves as both a valuable 
pedagogical instrument for pharmacology education and a capable 
platform for preliminary research, particularly in resource-limited 
environments. Future work should focus on comprehensive validation 
against established software.
Keywords: Pharmacokinetic modelling, scientific software, drug 
development, clinical research

Amaç: Kullanıcı dostu bir grafiksel kullanıcı arayüzüne sahip, açık 
kaynak kodlu ve Python tabanlı bir yazılım paketi olan “interaktif 
farmakokinetiki (FK)” geliştirmeyi amaçladık. Temel hedefimiz, 
endüstri standardı FK modelleme araçlarına erişimdeki maliyet ve 
karmaşıklık engellerini aşmak; öğrenciler ve araştırmacılar için teorik 
FK prensiplerinin pratik uygulamasını kolaylaştırmaktır.
Yöntemler: Yazılım, ilaç konsantrasyon-zaman profillerini simüle etmek 
için diferansiyel denklem sistemlerini çözerek bir, iki ve üç kompartmanlı 
modelleri kullanmaktadır. Parametre tahmini, logaritmik hata kareleri 
toplamını en aza indirmek için doğrusal olmayan optimizasyon 
algoritmaları kullanılarak gerçekleştirilir. Platform; temel hesaplamalar 
için NumPy ve SciPy kütüphanelerini, popülasyon verilerinin paralel 
işlenmesi için ise multiprocessing kütüphanesini kullanarak Python 
dilinde geliştirilmiştir.
Bulgular: Kullanıcı dostu bir grafik kullanıcı arayüzüne sahip, tam entegre 
ve işlevsel bir yazılım uygulaması oluşturuldu. Platform, kullanıcıların 
simülasyonlar yürütmesine ve Cmax ile Tmax gibi temel parametreler dahil 
olmak üzere sonuçları görselleştirmesine olanak tanımaktadır. Yazılım, 
tek kompartmanlı modeller için hasta verilerinden sıfırdan parametre 
tahmini gerçekleştirebilmekte ve önceden sağlanan verileri kullanarak 
yeni iki ve üç kompartmanlı modelleri oluşturabilmektedir.
Sonuç: Bu yazılım, temel FK simülasyonu ve modellemesi için erişilebilir 
ve ücretsiz bir araç sunmaktadır. Araç, özellikle kaynakların kısıtlı 
olduğu ortamlarda, hem farmakoloji eğitimi için değerli bir pedagojik 
enstrüman hem de ön araştırmalar için yetenekli bir platform görevi 
görmektedir. Gelecekteki çalışmalar, kabul görmüş yazılımlara karşı 
kapsamlı bir validasyon gerçekleştirilmesine odaklanmalıdır.
Anahtar Sözcükler: Farmakokinetik modelleme, bilimsel yazılım, ilaç 
geliştirme, klinik araştırma
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INTRODUCTION
Pharmacokinetics (PK) is a fundamental discipline of pharmacology 
that studies the disposition of a drug in the body, encompassing the 
processes of absorption, distribution, metabolism, and excretion 
(ADME). PK modeling, in turn, utilizes a mathematical framework 
to define and predict these ADME processes. These models provide 
key information on a drug’s efficacy and safety by predicting its 
time-concentration profile within the body in silico and are used to 
optimize therapeutic outcomes preclinically (1).

The model-based drug development (MBDD) approach, conducted 
through PK modeling, aims to reduce the high failure rates in 
clinical trials by providing better predictions about drug exposure-
response relationships. Another important aspect of this approach 
is its acceptance not only by scientists but also by regulatory bodies. 
Leading regulatory agencies like the US Food and Drug Administration 
and the European Medicines Agency actively encourage the use of 
MBDD and view it as a critical component of marketing authorization 
applications (2).

The growing importance of PK modeling has led to the development 
of various specialized software platforms designed to perform these 
analyses. This ecosystem consists of both commercial and open-
source tools, each specializing in specific types of analysis and is 
adapted to different user profiles.

Non-linear mixed-effects modeling (NONMEM) is a software package 
that has long been considered the gold standard for population 
PK/pharmacodynamic analyses. Its primary function is to analyze 
typically sparse data from patient populations to investigate the 
sources of variability in drug response (3).

Physiologically based PK (PBPK) modeling is an approach that 
mechanistically predicts ADME properties based on fundamental 
physiological and biochemical principles. The Simcyp simulator 
stands out as the most prominent platform in this field. It is known 
for its comprehensive libraries of diverse virtual populations and its 
ability to predict complex scenarios, such as drug-drug interactions 
(4).

Even though the current landscape of PK modeling software rests 
on a strong foundation, certain challenges and limitations present 
significant opportunities for developing new tools. These challenges 
include a lack of usability, accessibility, and integration with modern 
scientific computing platforms. All of these are directly linked to a 
broader issue encountered in pharmacology education. Students 
and young researchers find it difficult to translate theoretical 
principles into practical applications, a process known as “contextual 
learning transfer” (5). Software with complex interfaces deepens 
this educational gap and makes it difficult for the next generation of 
scientists to adopt these critical methods (6).

All the dominant platforms that are considered industry standards 
are commercial products. This restricts access for academic 
institutions, small biotechnology companies, and, in particular, 
researchers in low- and middle-income countries.

In this study, we developed an open-source, Python-based software 
package named “interactive PKs” for PK modeling and simulation 
to address these challenges. Our goal is to provide a powerful 
experimental tool open to further development by experienced 
pharmacologists and an intuitive learning platform for students and 
researchers new to the field.

MATERIALS AND METHODS
The software developed in this study was designed as an integrated 
platform that combines two fundamental components of PK 
analysis—simulation and parameter optimization—on a modern 
computational infrastructure. 

Libraries Used
The software is based on Python 3.13, chosen for its rich ecosystem 
of scientific libraries. Tkinter, Python’s standard interface library, was 
used to provide a desktop user experience and to make the software 
easily accessible to a wide audience. Two critical functions at the 
core of the software—solving differential equations and non-linear 
optimization—are handled by the NumPy and SciPy libraries. The 
industry-standard Matplotlib library was used to generate simulation 
results and graphics.

The multiprocessing library was employed to accelerate 
computationally intensive tasks, such as parameter estimation from 
population data, via processor-level parallelism.

Simulation
The software used a compartmental modeling approach to 
simulate the drug concentration-time profiles in the body. One-, 
two, and three-compartment models were represented as systems 
of differential equations describing the movement of the drug 
within the body. The equations used were based on differential 
pharmacological equations and on compartment-based PK models 
presented in Chapter 3 of Oğuz Kayaalp’s Medical Pharmacology, 
14th edition (7).

Equation 1. Basic concentration-time equation

The concentration equation for the central compartment was 
linked to those of the peripheral compartments through the 
intercompartmental transfer constants k12, k21, k13, and k31. 
Parameters for the percentages of free and bound drug were 
determined for each compartment.

The compartmental relationships described by differential equations 
were simplified by reducing the number of compartments. A 
three-compartment model was created first, followed by two-
compartment and single-compartment models.

The fundamental operating mechanism of the software is based on 
object-based and event-based programming, combined with solving 
differential equations. The software uses a numerical solver (solve_
ivp from SciPy) to simulate the process over small time intervals.

The solver works by following these steps:

1. Starts at time 0: It knows the initial drug concentrations in each 
compartment.

2. Rate calculation: It uses differential equations to compute the 
instantaneous rate of change.

3. Steps forward: It takes a small “time step” (e.g., 1 minute) and 
determines the updated amount of drug in each compartment 
based on the calculated rates.

4. Repeats: Steps 2 and 3 are repeated until the end of the simulation 
period.
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This process creates the concentration-time curve point by point. At 
the end of the process, an interactive concentration-time curve is 
displayed.

Parameter Estimation
In addition to simulations, the software includes parameter-
estimation functions that predict key PK parameters [ka, ke, volume 
of distribution (Vd), etc.] from patient concentration-time data. This 
process is treated as a non-linear optimization problem.

The objective of the optimization algorithms is to minimize the 
difference between model-predicted concentrations (Cpred) and 
observed concentrations (Cobs). To achieve this, our software uses 
the sum of squared logarithmic errors as its primary function. This 
function is expressed mathematically in equation 2.

Equation 2. Sum of squared logarithmic errors

The aim of the optimization process is to find the model parameters 
that make the predicted curve match the actual patient data as 
closely as possible.

1. Initial Estimate: The process begins with an estimate of the 
parameters.

2. Simulation: Using these estimated parameters, a simulation is run 
to generate a predicted concentration curve.

3. Error Calculation (Loss Function): The predicted curve is compared 
with the actual patient data points to compute a single error (loss) 
value.

4. Adjust and Repeat: An optimization function (scipy.optimize.
minimize) adjusts the parameter estimates to reduce the error. The 
gradient-based trust-constr and L-BFGS-B optimization algorithms 
are used to optimize this function. This “simulate-compare-adjust” 
loop is repeated until the error can no longer be reduced. The final 
parameters are those that produce the best-fitting curve.

When working with population data, calculating the error function 
for each individual can significantly slow processing. To overcome 
this computational bottleneck, our software leverages the 
multiprocessing library. This method allows for parallel computations 
on multiple processor cores. The goal of this approach is to make the 
analysis of large datasets more practical by significantly accelerating 
the optimization process compared with single-core processing.

Using a parameter-estimation approach, four functions were 
integrated into the software.

1. Creation of single-compartment parameters from real patient 
data: users can input patient concentration-time data to determine 
parameters for a one-compartment analysis.

2. Assessment of the fit of existing patient data to pre-existing 
two- or three-compartment model data: after entering patient 
concentration-time data, the system evaluates how well the data fit 
an a priori reference model.

3. New models are developed from existing patient concentration-
time data using a pre-existing two- or three-compartment model: 
users enter the concentration-time data, and a new model is created 
by optimization against an a priori reference model.

4. Generation of two-compartment model parameters from a single-
compartment model: unlike the first three methods, this function 

uses both optimization and a heuristic approach to generate those 
parameters.

Attempt to Estimate Two-Compartment Model Data from 
One-Compartment Model Data
Attempting to generate parameters of a two-compartment model 
from one-compartment data represents the most experimental 
aspect of our software. For this purpose, a heuristic equation was 
developed.

Equation 3. Heuristic equation for estimating two-compartment 
parameters from single-compartment parameters. (Equation 
Parameters: Ke1comp: Elimination constant from the one-compartment 
model; Vc: Tissue compartment volume; Vp: Plasma compartment 
volume; Vd: Virtual distribution volume; Kp: Ratio of free drug ratio in 
plasma to free drug ratio in tissue; R: Ratio of Vd to (Vc+Vp); e: Euler’s 
number).

This equation generates a two-compartment model from 
single-compartment data, using a formula derived from several 
assumptions. The known variables in this equation are manually 
entered values for Vd and ke1comp the free drug fraction in plasma, 
and the calculated values for Vc and Vp based on body weight. The 
goal is to obtain an approximate value of k12 using these values.

We can explain this equation step-by-step as follows:

1. The calculation of [(Vc/Vp)*Kp] in the middle of the equation 
involves dividing the amounts of free drug in the two compartments. 
The purpose of this calculation is to determine approximately 
whether the drug is more likely to move from plasma to tissue or 
from tissue to plasma. At steady state, we obtain the ratio of the 
total drug amount in the tissue compartment to that in the central 
compartment. This combined ratio is used to establish a balance 
between k12 (the rate of transfer from plasma to tissue) and k21 
(the rate of return from tissue to plasma). The Kp value, which is 
calculated based on the drug-binding rate in tissue, is derived from 
the equation Vd = Vp + [Vc* (plasma free drug fraction/tissue free 
drug fraction)]. This formula is based on the assumption that “as the 
free drug fraction in plasma increases and the free fraction in tissue 
decreases, the drug is expected to bind more extensively in tissue, 
thereby increasing the Vd.

2. The value of R is calculated by dividing the virtual Vd, already known 
from the single-compartment model, by the total physiological 
volume (Vp + Vc), which is calculated from body weight. This ratio 
serves as an approximate measure of how much of a drug is retained 
in the tissues. For example, if the ratio is 5, it means the drug behaves 
as if it’s distributed in a volume five times the physical volume. 
Therefore, the calculation e(R−1)*2.5 suggests that, as R exceeds 1, the 
accumulation rate in the tissue will increase and k12 will increase 
proportionally as well.

3. However, based on the ke1comp/R² calculation in the equation, the 
drug’s elimination must decrease in proportion to R². The drug’s 
tendency to remain in the plasma decreases as R increases. Making 
k12 proportional to ke1comp in this equation ensures the consistency 
of the two-compartment model. Assuming that a rapidly eliminated 
drug also distributes rapidly and that a slowly eliminated drug 
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distributes slowly, a more balanced model can be created. If there 
were no such relationship between k12 and ke1komp, it would be 
possible to produce strange and illogical models in which a drug is 
eliminated very quickly but enters tissues extremely slowly.

This equation is merely a heuristic estimate and cannot directly 
simulate real-life situations. We observed that attempts to use this 
approach were unsuccessful. Two-compartment model predictions 
generated by this equation were unsuccessful.

Subsequently, the curve estimated by this equation was considered 
a hypothetical model. The single-compartment and the hypothetical 
two-compartment model curves were optimized relative to one 
another. When an optimization approach was applied to the two 
curves, substantially more successful estimation curves were 
obtained. The partial success achieved at this stage was retained in 
the software as a basis for further experimentation and development. 
This is currently at an experimental stage and requires further 
mathematical development and testing in a real-world environment.

Finally, all the simulation and parameter estimation functions 
within the software have been integrated and presented to the user 
through a user-friendly interface.

This research focuses on the design and implementation of an open-
source computational tool for PK modeling. The study methodology 
relies entirely on mathematical algorithms and theoretical data 
processing. As no human subjects, animal models, or biological 
samples were utilized or collected during the development and 
testing of this software, no ethical approval was sought or required 
for this work.

RESULTS
Based on the approaches applied, an integrated environment with a 
user-friendly interface was created. When the program is launched, 
the screen shown in Figure 1 appears.

The first feature on the interface is a control for selecting the number 
of compartments. Users can choose among one-, two-, and three-
compartment models (Figure 1a). This is followed by the section for 
entering model parameters (Figure 1b). For the single-compartment 
model, the required parameters are the virtual Vd, plasma protein 
binding rate, simulation duration, simulation time step (calculation 
frequency), and steady-state concentration tolerance, which 
determines the precision of the steady-state concentration. The 
model-parameter screen shows minor differences between the 
two- and three-compartment models. For instance, in the two-
compartment model, the user must determine the transfer 
coefficients from plasma to tissue (k12​) and from tissue to plasma 
(k21​), and the percentage of protein binding in the tissue (Figure 2).

Next, the user is prompted to select the route of administration, 
with options for oral, IV bolus, and IV infusion. Here, the user also 
determines whether elimination will follow first-order or zero-order 
kinetics (Figure 1c).

In the block below, the elimination parameters are entered according 
to the chosen elimination type. If first-order kinetics is selected, 
the elimination constant (Ke) is required; if zero-order kinetics is 
selected, the user must provide the Vmax and Km values (Figure 1d).

The next block, which is optional, is for a loading dose. If this option is 
selected, the user is prompted to provide the loading dose (Figure 1e).

Finally, the user is prompted to specify the dose, number of doses, 
dosing interval, absorption rate, intestinal bioavailability, and hepatic 
bioavailability (Figure 1f).

After the “start simulation” button is clicked, a concentration-time 
graph will be generated (Figure 3). Additionally, the estimated half-
life, Tmax, Cmax, clearance, steady-state concentration, and time to 
reach the steady-state concentration will be calculated (Figure 1g).

Additionally, the software’s capabilities extend beyond mere 
visualization of differential equations.

De Novo Estimation Function from Patient Data
The software can create population data and estimate Ka and Ke using 
only patient blood concentration-time data and the provided volume 
of distribution and plasma protein-binding rates. Furthermore, it 
can generate concentration-time population curves based on these 
parameter estimates.

To use this function, the user inputs the patient number, dose, 
blood sampling time, and concentration values into the interface 
(Figure 4). The system then iteratively applies optimization 
algorithms. This process can take a relatively long time (30 minutes 
to 1 hour), depending on how close the initial estimates are to the 
correct values. Following this process, goodness-of-fit graphs can 
be generated at the user’s request. The operation concludes with 
the estimation of model parameters and the visualization of the 
predicted concentration–time profile based on these parameters 
(Figure 5).

Estimation from Patient Data: Two- and Three-Compartment 
Models
Because of the large number of unknown variables in the two- and 
three-compartment models, new values could only be obtained 
through optimization based on a previously prepared model. 
Therefore, an a priori model must first be entered into the system. 
The system then attempts to determine new parameter estimates for 
these patients using the patient concentration-time data provided to 
the software (Figure 6).

This method not only builds a new model from an a priori model 
but also evaluates how well the entered data fit the pre-existing 
predictive model.

Estimation from Single-Compartment Model Data to Two-
Compartment Model Parameters
When the estimated curve resulting from the heuristic equation 
was treated as a hypothetical model, the single-compartment 
and hypothetical two-compartment model curves were optimized 
relative to each other. It was observed that optimizing the fit 
between the two curves produced substantially more accurate 
prediction curves than the initial attempt (Figure 7). Here, the 
criterion for success was the similarity between the curve of the 
single-compartment model and the newly created optimization 
curve; no mathematical similarity analysis was conducted. This point 
is still in the experimental stage and needs to be further developed 
mathematically and tested in a real-world environment.
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Figure 1. Main User Interface. (a) Selection of the number of compartments. (b) Model parameters. (c) Selection of the drug administration route and 
elimination type. (d) Determination of elimination parameters. (e) Selection of a loading dose. (f) Dose parameters, absorption rate, and bioavailability. 
(g) Calculated parameters.

Figure 2. View in a two-compartment model.

Figure 3. Concentration-time graph resulting from a two-compartment model calculation (the dark blue line: total plasma concentration. The light blue 
line: Free plasma concentration. The dark green line: total tissue concentration. The light green line: free tissue concentration). 
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Figure 4. De novo estimation function from patient data.

Figure 5. Visualization of the results from the de novo estimation function using patient data.
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DISCUSSION

In this study, a software tool was developed to simulate and predict 
fundamental PK analyses. This software platform was designed to 
meet the needs of both educational and research fields.

The software interface is the most crucial element for ensuring 
accessibility and ease of use, which is our claim. In this context, 
the software’s features should be regarded as a curated set of 
the most fundamental and frequently used tools in PKs. This 
highlights our strategic approach during the design phase. Rather 
than competing with the highly specializedand comprehensive 
features of commercial giants, our study focused on addressing 
the core curriculum of PK education and the fundamental needs of 
exploratory research. Therefore, the success of this work should be 
evaluated not by “what it can do”, but by “whom it empowers”.

Historically, the field of pharmacometric modeling has been 
dominated by powerful yet costly commercial software such as 
NONMEM and Simcyp. While these tools are considered industry 
standards, they create significant financial barriers. This makes 
them largely inaccessible to academic institutions, researchers in 
low-income countries, and small-scale companies. The open-source, 
free nature of the developed software is intended to completely 
eliminate this financial obstacle.

A second obstacle is the complexity and steep learning curve. Tools 
such as NONMEM are command-line-based and require in-depth 
knowledge of specialized programming languages or complex 

control files for effective use (8). In contrast, our software’s user-
friendly graphical interface removes this barrier, allowing users to 
focus on PK principles without struggling with the software.

However, strong alternatives exist within the open-source domain. 
The most prominent of these is the nlmixr2 package, which is based 
on the R programming language. nlmixr2 is a code-based solution 
that requires programming proficiency (9). Additionally, user-
interface add-ons like shinyMixR, which have been developed for 
this package, indicate a need for user-friendly platforms within this 
ecosystem (10).

Basing this software on Python places it in a unique position regarding 
its linguistic foundation. While R has deep roots in statistics and 
bioinformatics, Python is increasingly the dominant language for 
scientific computing, data science, and machine learning. Its larger 
talent pool and ability to integrate more smoothly into large-scale 
corporate or web-based workflows make Python an attractive choice 
for modern scientific software development (11). Consequently, this 
software is positioned not only as a PK tool but also as a potential 
component of a broader Python-based scientific workflow.

The software’s value should also be assessed by its potential to 
transform how PKs is taught and applied. Its accessibility and 
ease of use have the potential to foster pedagogical innovation in 
education and to provide equal opportunities for researchers. The 
software transforms abstract equations into an interactive visual 
experience. It allows learners to change parameters such as dose, 

Figure 6. Visualization of the new concentration-time model estimated from patient data in a two-compartment modelç (a: the “x” marks show the 
patient data, while the dashed red line represents the new model curve created through optimization; b: the red dots indicate the new patient data 
entered, and the blue line shows the estimated model curve). 

Figure 7. Estimation of two-compartment model parameters from single-compartment model data. (a) The dashed blue line represents the model 
resulting from the heuristic formula, the black line shows the single-compartment model, and the red line is the curve of the common model that emerged 
from optimization. (b) Panel b shows the new parameters created through optimization being tested in a two-compartment model simulation. 
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clearance, and volume of distribution and instantly see the results 
on the concentration-time curve, providing a dynamic, intuitive way 
to learn how these concepts are interrelated. This type of hands-
on, simulation-based learning is a powerful active learning strategy 
that can increase understanding and retention more effectively than 
static textbook examples. Therefore, it can be confidently stated that 
this tool can make the learning process more engaging and effective 
by allowing students to explore theory in a gamified manner and to 
observe the results immediately.

Study Limitations
The software is more than a simulator; it is also a predictive tool 
that incorporates several optimization functions, some of which are 
more effective, while others remain experimental. At this point, it is 
important to highlight the effort required to calculate the transition 
from a single-compartment model to a two-compartment model. 
Initially, a heuristic equation-based approach was attempted but 
proved unsuccessful. This failure is, in itself, a significant finding 
because it provides evidence of the non-linear nature of the 
relationship between single-compartment and two-compartment 
model parameters. While the second approach, based on 
optimization between two curves, was more successful, this feature 
is not yet mature.

On the other hand, the software’s current capabilities must be 
evaluated within certain limitations. One of the most significant 
limitations is its focus on standard compartmental models in its 
current form. This excludes more complex and mechanistic modeling 
paradigms, such as PBPKs, which play a central role in modern drug 
development. This situation defines the boundaries of the software’s 
current applicability.

Another critical limitation is the lack of a comprehensive official 
validation study. While the software is functional, its outputs have 
not yet been compared with those of established software or with 
standard reference datasets accepted by regulatory agencies. This 
step is indispensable for the software to be accepted as a reliable 
research tool. This validation is essential for adoption of the software 
by the scientific community and should be the top development 
priority for future work.

CONCLUSION

In this study, new open-source PK-modeling software built within 
the Python ecosystem was developed. The platform offers a package 
of fundamental simulation and parameter estimation tools within an 
accessible graphical user interface.

The primary and most novel contribution of this work is not the 
invention of new modeling algorithms. Instead, existing numerical 
methods have been holistically integrated into a platform that 
aims to overcome critical barriers—such as cost, complexity, and 
usability—that limit access to industry-standard tools. This approach 
is intended to make PK modeling capabilities accessible to a wider 
audience.

In doing so, the study makes a dual contribution to the field: on 
the one hand, it provides a powerful pedagogical tool to bridge the 
gap between theory and practice in pharmacology education, and 
on the other hand, it empowers researchers in resource-limited 
environments with a capable platform for preliminary modeling 
and hypothesis testing. We also believe that our work will make 

significant contributions to postgraduate and lifelong learning in 
pharmacology. These capabilities require further improvement and 
validation through future development efforts.
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