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Dijital sağlık ve tele-tıp alanındaki ilerlemeler, göz bakımı hizmetlerinin 
erişilebilirliğini ve etkinliğini artırabilecek araçların ortaya çıkmasını 
sağladı. Güncel araştırmalar, teknoloji destekli yaklaşımların bakımın 
sağlanma biçimini nasıl değiştirdiğini gösteriyor. Geleneksel tanı 
yöntemleri hekim uzmanlığına dayandığından yanlış tanı oranları 
yüksek ve veri yetersizliği fazladır. Oftalmolojinin yapay zeka (YZ) ile 
bütünleştirilmesi, mevcut tanı yaklaşımlarını baştan aşağı değiştirmeyi 
ve önemli bir klinik etki yaratmayı vadediyor. Makine öğreniminin (ML) 
yeni ortaya çıkan bir alanı olan derin öğrenme, açık kural tanımlamaları 
olmadan karmaşık veri yapılarını ortaya çıkarabilir. Derlemede, 
diyabetik retinopati, dejeneratif makülopati, retina hastalıkları, kornea 
hastalıkları, ön göz bölgesi sorunları ve glokom gibi göz bozukluklarının 
tanımlanması ve tedavisinde YZ’nin devrim niteliğindeki potansiyeli 
ele alındı. Kişiye özel tedavi planları, erken tanı ve kategorizasyon 
için görüntü analizi, desen tanıma ve ML tekniklerindeki YZ destekli 
gelişmeleri araştırıyor. Bu makalede veri standartları, yorumlanabilirlik 
ve klinik uygulamaya entegrasyondaki zorluklar tartışılmaktadır. Ayrıca 
YZ’nin tarama verimliliğini artırma, hekim iş yükünü azaltma ve göz 
patolojilerinde hasta sonuçlarını iyileştirme potansiyeline de vurgu 
yapılıyor.

Anahtar Sözcükler: Derin öğrenme, glokom, diyabetik retinopati, göz 
hastalıkları, yapay zeka, dejeneratif makulopati

Progress in digital health and telemedicine has brought forth 
instruments can enhance the accessibility and efficacy of eye care 
services. Current research shows how technology-enabled approaches 
are changing the way care is provided. Traditional diagnostic 
methods rely on physician expertise, resulting in high misdiagnosis 
rates and data inefficiency. Integrating ophthalmology with artificial 
intelligence (AI) promises to overhaul current diagnostic approaches, 
potentially making a significant clinical impact. Deep learning, an 
emerging facet of machine learning (ML), can uncover complex data 
structures without explicit rule specifications. The review centers on 
the revolutionary potential of AI in the identification and treatment 
of ocular disorders, such as diabetic retinopathy, degenerative 
maculopathy, retinal diseases, corneal diseases, anterior ocular region 
issues, and glaucoma. It explores AI-driven advancements in image 
analysis, pattern recognition, and ML techniques for individualized 
treatment plans, early diagnosis, and categorization. The difficulties 
with data standards, interpretability, and integration are discussed in 
this paper into clinical practice. It also emphasizes the potential of AI to 
enhance screening efficiency, reduce physician workload, and improve 
patient outcomes in ocular pathologies.
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ophthalmology, artificial intelligence, degenerative maculopathy
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INTRODUCTION
Artificial intelligence (AI) uses computer algorithms to imitate 
the human intellect, which is becoming increasingly common 
in medicine. AI in medicine enables rapid and accurate analysis 
of medical data, which is beyond the ability of human doctors. 

Machine learning (ML), a subset of AI, adapts its parameters based 
on data to generate computer algorithms for making predictions 
and responding to data. The integration of AI is particularly 
advantageous in ophthalmology, where the field’s extensive use 
of digital imaging techniques made many modalities to be used 
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together with quantifiable parameters such as visual acuity or foveal 
thickness. A significant dataset is made available by the growth of 
multi-modal digital images and electronic medical databases in 
ophthalmology for AI analysis. ML, which was originally introduced 
by Arthur Samuel in 1959, refers to an AI process in which a machine 
autonomously generates its programing and acquires the ability 
to execute tasks independently (1). In supervised ML models, the 
machine learns from pre-existing data containing accurate answers, 
making it particularly valuable for classification purposes, whether 
dealing with categorical values like “disease” or “no disease” or 
variables that may take on any value within a range, such as height 
or weight (2). The process involves utilizing a validation dataset 
to assess external validity. Conversely, unsupervised ML involves 
examining data without predefined answers, with the primary 
objective of modeling the data structure or distribution to gain 
insights. This method is especially useful for identifying associations 
among data. The integration of the capabilities of human doctors 
with those of deep learning (DL) algorithms is anticipated to reduce 
mistakes in diagnoses and therapies inherent in the existing systems 
(3,4). These models provide more accurate recommendations 
from basic eye care services provided in the community to 
professional ophthalmologists, ultimately optimizing diagnosis. 
Tele ophthalmology has significantly contributed to enhancing 
the availability of eye screening and facilitating distant expert 
evaluations in rural areas. This can be achieved via synchronous and 
mixed synchronous-asynchronous solutions (5) or “store, forward 
and video consultation” methods (6). However, despite the improved 
clinical outcomes shown by digital ophthalmology solutions, their 
growth potential is constrained by the need for more infrastructure 
and professionals to implement them. Unlike telemedicine and AI, 
which are not restricted to specific locations (such as to address the 
demand for eye hospitals that specialize in certain eye conditions 
or the availability of knowledgeable eye care professionals), these 
solutions may be combined with other technological advancements, 
such as imaging apparatus, to effectively deliver and improve 
primary care and eye screening services. Given the documented 
relationships between clinical features and disease severity in major 
eye issues, AI is particularly well-suited for use in eye screening. 
Early detection and treatment of ocular conditions are critical for 
preventing visual impairment and improving the general quality 
of life. Traditional diagnostic approaches rely heavily on doctors’ 
expertise and limited expertise, leading to a significant occurrence 
of misdiagnosis and ineffective use of medical data. Integrating AI 
with ophthalmology can transform the disease diagnosis paradigm, 
yielding substantial clinical benefits. DL, an emerging facet of ML, 
can reveal intricate patterns within datasets without requiring 
explicit rule specifications. DL algorithms automatically learn the 
features of input data in an unsupervised manner, eliminating 
the need for manual segmentation and depiction of lesion areas 
(7). However, the training of DL algorithms requires a large 
dataset. Transfer learning involves retraining an algorithm that has 
undergone pretraining on many generic images, particularly on 
a focused dataset, and transferring the same for diagnosis usage. 
This methodology allows for a precise model with comparatively 
few training datasets. Heat maps can be used to identify pixels that 
impact image-level predictions. This method is particularly useful in 
the medical industry because heat maps help visualize and identify 

probable aberrant regions in input images. These regions can then 
be further reviewed and analyzed (8,9). This feature can provide 
immediate verification of computerized diagnoses during patient 
treatment. Several established DL techniques include convolutional 
neural networks (CNN), deep boltzmann machines, deep kernel 
machines, deep recurrent neural networks (NN), and models of both 
short-term and long-term memory.

AI’s Importance in Ophthalmology

Over the last 5 to 10 years, advancements in computing ability 
and the accessibility of extensive datasets and the development of 
DL have been driven by AI. Recent research utilizing advanced AI 
methodologies, including DL, has demonstrated robust outcomes, 
surpassing human performance in various domains in medicine and 
healthcare. Unlike traditional ML methods, which require expert 
eye doctors to annotate specific clinical characteristics in images 
for AI model development (referred to as “supervised learning”), DL 
employs a different approach known as “unsupervised learning.” DL 
eliminates the need for individual feature labeling by training the 
model on complete images annotated by professionals with clinical 
diagnosis or disease severity. This enables AI to generate norms by 
autonomously learning discriminative features to classify diagnoses 
or severity. When it comes to classifying ophthalmic imaging data-
such as color fundus photography (CFP), which is used to identify 
various eye disorders like diabetic retinopathy (DR)-DL algorithms 
have demonstrated clinically acceptable performance. Compared to 
2-dimensional CFPs, optical coherence tomography (OCT) imaging 
provides comprehensive 3-dimensional data, which can enhance the 
efficacy of existing CFP-based screening techniques. Finding retinal 
characteristics that match common eye disorders like glaucoma, 
age-related macular degeneration (AMD), and DR (10,11), and 
predict AMD progression using OCTs (12), as well as classifying 
glaucoma using ophthalmic imaging (13,14). These advancements 
mistake rates that are lower than generally acknowledged signify the 
promising role of DL in revolutionizing the field of ophthalmology. 
Despite the positive findings in research studies regarding the 
impressive performance of DL in clinical validation, there is a need 
for more investigations assessing its practical applications in real-
world utilization. The concept of a “fully automated model” implies 
a system that operates independently without human provider 
or participation because the AI system itself takes the initiative to 
refer patients to ophthalmologists when necessary or to identify 
individuals suitable for ongoing community-based monitoring. On 
the other hand, a “semi-automated model” encompasses various 
scenarios involving human graders or ophthalmologists, collaborating 
with the DL to enhance patient classification and serving as a tool for 
triaging individuals. DL algorithms relying on AI can be incorporated 
into a “semi-automated model”, wherein a human evaluator (such 
as a doctor or optometrist) intervenes in categorizing imaging data 
identified as abnormal by the AI. The computer-based machine 
learning (CML) methods used in AI diagnosis include decision 
trees, random forests (RF) (15), support vector machines (SVM) 
(16), Bayesian classifiers (17), k-nearest neighbors (18), k-means 
(19), linear discriminant analysis (20), and NN (21). Within this 
array, RF and SVM stand out as the most frequently employed CML 
technologies in the field of ophthalmology. DL, an emerging ML 
technology, possesses the capability to uncover intricate structures 
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within datasets without the necessity of explicitly specifying rules. 
DL algorithms autonomously learn features from unsupervised input 
data, eliminating the need for manual segmentation and depiction 
of lesion areas. Training the DL algorithm demands a substantial 
dataset. Transfer learning involves retraining an algorithm previously 
trained on a vast array for a dataset of diverse photos/images 
(22). This approach enables the creation of a very precise model 
even when using a relatively small training sample. Heat maps 
provide the potential to unveil the individual pixels that contribute 
to predictions made at the picture level. Within medicine, this 
visualization technique can accurately identify and highlight areas 
in the input picture that may be considered aberrant. This, in turn, 
makes it easier for medical professionals to evaluate and analyze 
these regions further. At the point of service, it might help with 
the instantaneous clinical validation of computerized diagnoses. 
Numerous techniques are used in DL, including CNN, deep Boltzmann 
machines, deep kernel machines, deep recurrent NN, and long- and 
short-term memory. A variety of CML techniques, such as decision 
trees, RF, support SVM, Bayesian classifiers, k-nearest neighbors, 
k-means, linear discriminant analysis, and NN, are used in the field 
of ophthalmology for AI diagnosis. The two CML technologies most 
frequently applied in the field of ophthalmology are RF and SVM 
Figure 1.

Diabetic Retinopathy

DR screening is essential for allowing early detection and 
treatment, which averts vision loss. AI has been investigated in the 
identification of DR using a variety of imaging modalities, such as 
OCT pictures, ultra-widefield (UWF) imaging, and even smartphone 
retinal photographs. The intraretinal fluid shown in OCT scans can 
be precisely identified by CNNs. With its ability to view up to 200° 
of the fundus, UWF imaging may be able to detect more peripheral 
diabetes conditions. The scarcity of imaging equipment and restricted 
accessibility are obstacles to efficient DR screening. An impressive 
solution is an offline AI system that runs on a smartphone and has a 
high accuracy in recognizing severe DR (23). In an effort to address 
this worldwide health issue, AI has been used to predict the risk of DR 
and its progression in people with diabetes. Recognizing particular 
irregularities, such as macular edema (24-27), With CML, exudates, 

microaneurysms, and neovascularization on the optic disk are made 
possible. To guarantee prompt attention and intervention, a system 
that focuses on rapid and effective proliferative DR detection has 
been created (28). DR identification was made possible by Gulshan 
et al.’s (24) groundbreaking work, which used DL and massive fundus 
imaging datasets to train a deep CNN. Using supervised learning, a 
deep CNN is trained. According to their research, DL methods have 
a high sensitivity and specificity and can identify referable DR with a 
great degree of accuracy (29). Furthermore, a CML-based computer-
aided diagnostic (CAD) system that makes use of OCT angiography 
images was employed. It successfully identified non-proliferative DR 
with high accuracy automatically Figure 2.

Degenerative Maculopathy

Degenerative maculopathy is a prevalent contributor to vision 
impairment, affecting million individuals globally. Timely 
identification and intervention can significantly mitigate the risk of 
vision loss. Given the substantial impact of the disease, AI holds the 
potential to facilitate widespread screening through the analysis of 
retinal images and OCT, doing away with the requirement for in-
person evaluations. The advancement of this domain has traces its 
origins from ML, utilizing datasets comprising fewer than 1000 images 
to the current state of a collection of more than 490,000 photos; 
the dataset demonstrates impressive sensitivity and specificity (30). 
Feeny et al. (31) developed a DL technique to identify abnormalities 
using over 130,000 pictures from 4,613 patients automatically. Their 
DL system had a remarkable accuracy rate of 92% in identifying 
persons with intermediate and advanced stages of diabetes mellitus. 
This was achieved using DL techniques, including examination of 
optical OCT, fundus pictures, and OCT angiography images, which 
improved the accuracy (32). A fluid volume measurement technique 
for neovascular diabetic macular edema patients has been created 
using AI. This efficiently tracks the favorable response to medical 
intervention. Furthermore, a number of significant characteristics 
linked to AMD, such as pigment epithelial detachment and 
intraretinal fluid and subretinal fluid, have been measured using 

Figure 1. Various facets of AI in ophthalmology.
AI: Artificial intelligence.

Figure 2. AI in diabetic retinopathy.
AI: Artificial intelligence, DR: Diabetic retinopathy, OCT: Optical coherence 
tomography, DCNN: Deep convolutional neural networks.
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DL techniques. Research has focused on examining fundus images 
to identify drusen (33), fluid (34), reticular pseudodrusen (35), and 
geographic atrophy (36). With a usual accuracy rate of over 80%, 
the detection also includes the ability to forecast drusen regression, 
an important anatomical indicator distinguishing intermediate AMD 
and the beginning of severe AMD (37). This prediction is assisted by 
a specialized, fully automated ML algorithm. The process involves 
the application of automated image analysis techniques to recognize 
and characterize individual drusen at the initial assessment, with 
ongoing monitoring of their progression at subsequent visits. By 
leveraging this characterization and analysis, a survival analysis-
based possibility of hazards and the anticipated deterioration of 
each individual drusen were determined using the ML method. Most 
importantly, automated retinal lesion detection and disease activity 
analysis demonstrate that it is feasible and holds considerable 
potential as a dependable tool in clinical practice Figure 3.

Other Retinal Disease

A DL model effectively identifies referable retinal illness using OCT 
images, exhibiting performance levels with retina subspecialists. 
This approach demonstrated competence in identifying diseases, 
including geographic atrophy, drusen, macular edema, macular 
holes, vitreomacular traction, central serous retinopathy, and 
epiretinal membrane membrane (38). The algorithm could 
accurately forecast retinal function in microperimetry for patients 
with stargardt disease by analyzing the structural characteristics of 
OCT using DL techniques. AI systems have shown the capacity to 
detect disorders, such as Macular telangiectasia, sickle cell disease, 
pachychoroid vasculopathy, and central serous retinopathy (39-42). 
Abnormal development of blood vessels in the retina is known as 
retinopathy of prematurity (ROP), which is a significant cause of 
juvenile blindness. The ETROP trial results highlight the critical need 
of early screening and intervention to improve visual outcomes for 
ROP (43). Recent developments suggest that AI may play a major role 
in ROP diagnosis, which would improve treatment outcomes. When 
evaluated on an independent dataset of 100 photos, a DL algorithm 
trained using wide-field retinal photographs outperformed six out of 
eight ROP experts in terms of diagnostic skill (44).

Corneal Disease
AI has lately been studied in anterior eye segment illnesses (45). It 
has shown promising results in accurately predicting the diagnosis of 
many corneal conditions, such as infectious keratitis (IK), keratoconus, 
pterygium, endothelial diseases, and difficulties associated with 
corneal transplantation. Dealing with clinical difficulties related to 
IK, such as accurately diagnosing the condition owing to variables 
including limited culture yield, absence of pathogen-specific 
characteristics, and infections caused by several microorganisms, 
continues to be an important element (46) for the treatment. Slit-
lamp photos, often used in clinical settings to record and track IK and 
other disorders affecting the surface of the eye, have shown their 
ability to precisely diagnose different problems of the front part of 
the eye, such as IK, pterygium, conjunctivitis, and cataract (47). A 
unique DL system was created to automatically distinguish between 
fungal keratitis and non-fungal keratitis in corneal pictures (48). 
Furthermore, AI has shown its effectiveness in identifying corneal 
ectasia, namely keratoconus, by aiding in the early identification of 
suspected keratoconus, also known as forme fruste keratoconus, 
which can be difficult to diagnose. Numerous AI techniques, like 
automatic decision-tree classification (49), feedforward NN, CNN, 
and SVM learning, have been studied and proven to be successful 
(50). AI technologies, such as Keratodetect and ectasia status 
Index have been developed to diagnose keratoconus early and 
evaluate patients prior to refractive surgery. The anterior segment 
OCT, corneal topographies, and tomographies are used by these 
algorithms to analyze (51). Current endeavors have concentrated 
on formulating CNN algorithms that use numeric data matrices 
to enhance efficiency and flexibility for various topographical 
scenarios. AI has lately been used to investigate susceptibility genes 
linked to keratoconus. Hosoda et al. (52) identified particular gene 
regions linked to keratoconus susceptibility using IBM’s Watson 
drug delivery. A genome-wide association study focusing on central 
corneal thickness was used to achieve this. DL algorithms have 
been applied to OCT images to distinguish between normal and 
edematous corneas (53). Fuchs endothelial corneal dystrophy was 
diagnosed using AI at an early stage (54). The clinical feature of using 
in vivo confocal microscopy images to evaluate the characteristics of 
the subbasal nerve plexus and establish connections with ocular and 
systemic illnesses has recently increased. The process of manually 
and partially automating the analysis of nerve fiber characteristics 
is well-recognized as arduous and time-intensive. However, the use 
of computer vision algorithms has greatly eased the automation of 
nerve analysis (55). Correlations between ocular nerves and diabetic 
neuropathy have been established using CNN-based approaches 
(56). The suggested technique entails the examination of three 
images from each eye, which allows for a thorough study similar to 
the clinical procedure performed by humans, eliminating the need 
for creating montages and acquiring additional images. Examining 
cataract pictures with computer-aided analysis is desirable. This 
entails automatically detecting and evaluating cataracts by fundus 
photography and/or slit-lamp photography. Although this method 
is perfect for identifying abnormalities of both the anterior and 
posterior segments concurrently, it must take into account any 
factors that could cause confusion, such as constricted pupils or 
vitreous opacities. Two SVM classifiers and a fully connected NN 
were used to identify and classify cataracts using resnet18 (Residual Figure 3. Degenerative maculopathy.
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Network) and Gray Level Co-occurrence Matrix. For discontinuous 
state transition, a deep NN with six grading levels was created as a 
result. The DST-ResNet and EDST-MLP models accurately detected 
and graded cataracts, respectively. Unlike cataracts in adults, 
cataracts in children show more variation. The choice of surgery 
is based on the likelihood of amblyopia, which is caused by a lack 
of visual stimulation (57). Performing pediatric tests presents 
difficulties, particularly in producing consistently high-quality slit-
lamp pictures. The Apriori approach employs naive bayesian and RF 
prediction (58). After applying the synthetic minority oversampling 
approach to the datasets, three binary categories were resolved 
with average accuracy levels over 91%.

Anterior Ocular Region

Trachoma, a vision-threatening condition resulting from ocular 
infections with chlamydia trachomatis, was routinely investigated by 
analyzing eyelid images. There are two clinical trials: the PRET study, 
which focuses on eliminating trachoma in Niger, and the TANA trial, 
which aims to improve trachoma conditions in Northern Amhara 
(59). ML algorithms were used to identify trachomatous alterations 
(60) accurately. Furthermore, lacrimal scintigraphy (LS) has been 
established as a dependable and unbiased technique for evaluating 
tears and the lacrimal drainage system (61). ML and DL algorithms 
applied to LS images have demonstrated the ability to accurately 
diagnose lacrimal duct abnormalities in patients with a level of 
precision comparable to that of a skilled oculoplastic specialist. Ocular 
infections can cause trachoma, a disorder that can seriously impair 
vision. Thoracomatous alterations were successfully categorized 
using AI techniques, which let computers learn from experience 
and get better at it without having to be explicitly programed. LS 
has become a reliable and impartial technique for assessing tear 
flow and the lacrimal drainage system (62). Making use of DL and 
machine algorithms on LS images proved successful in classifying 
lacrimal duct pathology in patients, demonstrating accuracy on 
par with that of a proficient oculoplastic expert. The significance 
of meibomian glands (MGs) in maintaining ocular surface health is 
widely acknowledged, and the diagnostic technique involving the 
photographic documentation of eyelid MGs using Transillumination, 
often known as infrared light, is frequently employed for assessing 
and managing MG dysfunction. A DL approach was implemented 
to digitally partition and quantify the degree of MG atrophy in 
mimography images, thereby offering quantitative insights into 
gland atrophy. The algorithm demonstrated an impressive 95.6% 
accuracy in terms of grading meiboscores (63). An ML segmentation 
algorithm was employed to assess tear OCT and to measure meniscus 
thickness to quantify the amount of tear film (64). Although the 
sample size was small, the method consistently produced predictable 
findings. The researchers collected corneal topography data over 
time to develop a DL system for diagnosing keratoconus, a non-
inflammatory condition of the cornea characterized by astigmatism 
and stromal thinning. The resulting model was able to predict cases 
of subclinical keratoconus with notable accuracy, and it also showed 
decent accuracy in keratoconus screening. A “NN”, designed and 
put into use by Dos Santos et al. (65), dubbed CorneaNet, especially 
for corneal OCT image segmentation. This algorithm was created to 
measure corneal thickness in patients with keratoconus and those 
with normal ocular conditions. The corneal thickness, primary layers 

(epithelium, bowman’s layer, and the middle stroma). The models 
exhibited comparable performance in detecting keratoconus, 
achieving an accuracy of validation levels between 99.45% and 
99.57%. The application of DL was effective in identifying and 
classifying eyes with keratoconus, including the staging of the 
disease. Keratoconus is an irreversible condition that affects both 
eyes and is characterized by corneal weakening, protrusion, and 
scarring (66). Initially, it shows one-sided characteristics that may 
later develop, affecting both sides, except in uncommon situations 
(67). Identification of subclinical corneal ectasia poses a significant 
challenge. Both topography and tomography offer intricate data for 
each cornea to ophthalmologists. Despite the wealth of information 
distinguishing the several examined parameters, the distinctions 
between normal and subclinical keratoconus remain highly 
challenging for ophthalmologists. The Orbscan data employed SVM, 
multiple-layer perceptron classifiers, and radial basis function NN are 
examples of machine learning classifiers (MLC) (68). Each of these 
classifiers demonstrated proficiency in recognizing the previously 
mentioned corneal anomalies. Data from Scheimpflug tomography 
were selected over Orbscan information (69). Data from devices 
using Scheimpflug tomography-which generated three-dimensional, 
touch-free reconstructions of the anterior segment of the eye-were 
collected for the comparisons. After ML successfully differentiates 
between obvious corneal disorders, research efforts are directed 
toward creating AI that can recognize the subclinical features of 
corneal ectasia (70). Cataract, a condition characterized by a cloudy 
lens, affects many elderly individuals. Timely identification and 
intervention can significantly enhance the well-being of those with 
cataracts. ML techniques, including SVM and RF, have been used 
to detect and evaluate cataracts based on fundus photographs, 
ultrasound photographs, and visible wavelength photographs of the 
eye (71). Liu et al. (72) developed the first CAD system to classify and 
evaluate juvenile cataracts using CNNs. Additionally, a cloud-based 
platform with AI connectivity designed to promote cooperation 
between numerous hospitals has been developed. It is possible to 
design software for ophthalmologists and patients to use clinically, 
and the Zhong Shan Ophthalmic Center has documented the use 
of the program (72). These techniques are essential for creating 
surgical plans for horizontal strabismus and evaluating corneal 
power following myopia and corneal refractive surgery (73).

Glaucoma

Glaucoma is the second primary cause of permanent blindness 
globally. Detecting early-stage glaucoma has been proven effective 
in minimizing vision loss (74). The utilization of digital photography 
to capture images has been a prevalent technique for screening 
glaucoma, and its efficacy has been demonstrated in many 
telemedicine glaucoma programs. An extensive evaluation of 
persons suspected of having glaucoma may include gonioscopy, 
perimetry, tonometry, pachymetry, and spectral domain (SD) OCT 

(75). CFP of the optic nerve is an accessible and affordable way to 
check for glaucoma. Images of the optic nerve have been altered 
to help detect early signs of glaucoma more accurately thanks 
to ML. It is feasible to automate the early detection of glaucoma 
by integrating these algorithms into teleglaucoma screening 
protocols. Accompanying color fundus imaging with optic nerve OCT 
imaging has accelerated the creation of accurate DL algorithms for 
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glaucomatous nerve damage detection. When DL algorithms are 
trained to assess monoscopic optic nerve pictures using SD-OCT, they 
outperform glaucoma specialists in identifying glaucomatous optic 
nerve damage. Standard automated perimetry evaluation is one 
application of ML that seems promisinged (76). Many datasets are 
available, including findings from an extensive visual field (VF) test 
that was carried out over a long period of time. With a high degree 
of reliability, AI can anticipate glaucoma up to four years ahead of 
official raw VF data needed for diagnosis. The progression of patterns, 
a vibrational ML classifier, outperformed guided progression analysis 
in identifying the progression of glaucomatous optic neuropathy in 
patients with glaucoma and those suspected of having the disease 
(77). With the use of screening and monitoring datasets, AI seeks to 
produce affordable decision support systems that are as sensitive 
and specific as or more so than current techniques. The optic cup-
to-disc ratio (CDR) is a useful marker for glaucoma identification 
(78). AI algorithms can compute the CDR to assist in the diagnosis of 
early-stage glaucoma by using automated optic nerve head location 
and optic disc/cup extraction from retinal images (79). The most 
likely patch on OCT images was precisely identified by the SVM 
model during training to provide a reference plane for computing 
the CDR (80) by approximating the coarse disc margin using a spatial 
correlation smoothness constraint. As glaucoma worsens, defects 
in the VF play a major role in the deterioration of visual function. 
Early in the disease, changes in the central VF may manifest, which is 
consistent with findings from imaging studies (81). Therefore, early 
detection of glaucomatous changes in the VF is essential for both the 
diagnosis and management of glaucoma.

Challenges and Future Research

AI utilization and contemporary applications in research represent 
significant advances in optimizing and enhancing efficiency. As the 
number of electronic medical record increases, healthcare providers 
and medical facilities find themselves with an extensive patient data 
repository. AI plays a crucial and central function in this context, as 
creating computer-generated algorithms or the appropriate training 
of automated systems for bulk processing of patient information 
results is a substantially faster data collection process than manual 
methods. Ophthalmology, a medical discipline characterized by swift 
access to ophthalmic imaging and objective markers, is particularly 
well-suited for managing vast datasets. The Smart Eye Database is a 
database that holds electronic health information about patients 
with ophthalmology, arranged according to the conditions that 
affect each patient’s eyes (82). IRIS and the Smart Eye Database are 
two instances of datasets,  which enables the identification of subtle 
correlations, the execution of multicenter studies, the integration of 
multimodal analyses, the discovery of novel imaging patterns, and 
increased statistical power in research. These capabilities are 
challenging to achieve with smaller datasets (83). Modifications to 
these machines were confined to those foreseen and considered 
during pre-programing. Since humans programed the machine, its 
capabilities were restricted by the technological knowledge of the 
individuals who drafted the programing. The caliber of the dataset 
that an AI algorithm uses for training and validation determines the 
effectiveness of the program will be estimating the optimal number 
of training images within a dataset poses a challenge, as there is a 
common belief that a larger number of images leads to better 

outcomes. However, an excessively large dataset can impede the 
efficiency of the training process and potentially result in overfitting 
the MLC to the training dataset. Variations between machines from 
different brands may introduce subtle differences that can impact 
assessment accuracy. Restricting the number of categories in a 
program to those with significant predictive importance may be 
beneficial given the size of the dataset and the complexity of the 
algorithm (84). Establishing standards for reporting in future 
research is crucial for minimizing heterogeneity across studies. If AI 
improves medical care, it becomes imperative to ensure that these 
improvements reach populations facing financial constraints. A 
significant obstacle in deploying proven, the need for AI solutions is 
essential for a complete solution designed for practical use. Achieving 
this goal may involve integrating DL, implementing solutions that 
demonstrate satisfactory performance in a clinical setting, and 
ensuring that the solution can effectively handle pictures of different 
quality levels from regularly used equipment. There is a requirement 
for developing clinical guidelines that support the provision of 
patients with the DL system classifications and supporting their 
choice of patient. It is important to remember that the majority of 
DL systems in use today have only been independently validated for 
the classification of one eye condition at a time. For providers 
without technical AI or software skills, maintaining and switching 
between different DL systems for every possible eye condition is 
impractical and represents a considerable challenge. It is crucial to 
establish supportive systems and processes to rectify 
misclassifications among patients, including instances of incorrect 
classifications or errors in either direction. This emphasizes the 
importance of adopting standardized practices in the entire lifecycle 
of AI, encompassing development, validation, reporting and 
implementation. Such measures are essential to prevent 
misclassification issues, especially when AI is applied to diverse 
target populations. Ethical and legal dilemmas arise when employing 
DL systems to classify clinical data, particularly due to their lack of 
ability to explain. Addressing these challenges requires a focus on 
appropriate training data and external validation. Overcoming this 
obstacle is essential for ensuring the generalizability and practical 
application of these solutions. The challenge lies in the arduous task 
of labeling collected data throughout the training process, which 
requires the participation of skilled practitioners. By carefully 
selecting patients, the imaging datasets are repetitively labeled to 
calibrate the DL system, with each new set population potentially 
causing delays in adoption and contributing to setup costs. The 
inherent characteristics of AI and the absence of comprehensibility 
in DL methods provide substantial technical obstacles that must be 
resolved. Advancements in AI development for picture classification 
include using techniques like “soft attention” (85). New approaches 
like “weighted error scoring” are being created to compare the 
effects of inaccurate automated classification AI decisions to human 
grading (86). AI techniques have proven effective in the healthcare 
industry for identifying a range of illnesses. By easing the sharing of 
specialist expertise and optimizing limited resources, AI applications 
can greatly aid in the support of patients in remote areas. However, 
model accuracy frequently decreased as the frequency of disease 
increased. In order to enhance the use of AI in clinical settings, 
funding must be allocated toward developing intelligent systems 
capable of accurately diagnosing a broad spectrum of illnesses. 
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Reliance on a small number of abnormalities identified by a single 
imaging method may not guarantee accurate diagnosis of certain 
retinal diseases in clinical practice, such as glaucoma or DR. including 
a number of clinical images, including fundus, angiography, OCT, and 
VF imaging, is essential for constructing a robust AI system that 
ensures more reliable diagnostic outcomes. Despite the availability 
of various datasets, the fundamental challenge lies in the insufficient 
representation of the multitude of diseases that humans experience. 
Images depicting severe or rare diseases are notably lacking in these 
datasets. Therefore, when selecting input data, factors such as 
demographic features, the existence of various systemic illnesses, 
and the numerous physical traits of diseases should be considered. 
For more robust validation, larger datasets from diverse patient 
cohorts encompassing different settings, conditions, ethnicities, and 
environments are imperative for some automated diagnosis systems 
that have shown promising outcomes. Significant reliance on data 
quality should not be overlooked. The diversity of imaging devices, 
imaging procedures, and inherent noise in the data can substantially 
impact data quality, thereby exerting considerable influence on 
model performance. AI faces challenges in ophthalmological dyslexia 
by needing nuanced data for accurate recognition, understanding, 
and aiding dyslexic individuals (87). AI confronts significant challenges 
when it comes to enhancing wearable eye sensor gadgets tailored for 
eye-related diagnostic applications (88). The challenges lie in refining 
sensor precision, minimizing device size while maximizing data 
accuracy, addressing connectivity issues, ensuring seamless 
integration with AI algorithms, and fostering user trust regarding data 
security and privacy. AI confronts significant hurdles when it comes 
to enhancing wearable sensor gadgets tailored for eye-related 
applications. The challenges lie in refining sensor precision, 
minimizing device size while maximizing data accuracy, addressing 
connectivity issues, ensuring seamless integration with AI algorithms, 
and fostering user trust regarding data security and privacy. AI must 
overcome variability in symptoms, adapt to diverse language 
patterns, and provide personalized interventions. Ensuring inclusivity, 
privacy and ethical use while enhancing accessibility remain pivotal 
challenges in AI for dyslexia support. AI needs to revolutionize cancer 
diagnosis (89) for eye diseases, employing advanced algorithms to 
analyze medical images swiftly and accurately. In radiology, AI helps 
interpret complex optic scans, enhancing early detection and 
personalized treatment for ophthalmology.

CONCLUSION
AI and DL capabilities are advancing swiftly, presenting potential 
solutions to technical challenges. In the realm of ophthalmology, 
research on AI has moved away from creating and validating tools to 
their practical implementation. This crucial transition aims to identify 
and address practical and sociocultural challenges, tailoring solutions 
to the specific needs of users, including patients and healthcare 
providers. In conclusion, AI exhibits great promise in enhancing the 
capacity of health systems for eye screening in well-defined areas. 
This involves automating the classification of diseases, such as DR, 
across various clinical applications. There is a growing degree of 
preparedness as technology advances from clinical validation to 
translation; however, new difficulties arise when incorporating AI 
solutions into clinical care pathways and healthcare infrastructures. 

Current studies are in progress to tackle the issues mentioned and 
provide focused remedies.
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