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ABSTRACT  
 
Aim : In our study ,we investigated the paclitaxel induced cardiotoxicity and 
alterations in Ca2+ influx , oxidative stress and apoptosis through transient 
receptor potential melastatin 2 (TRPM2) channels and modulator role of N-
acetyl cysteine (NAC) in cardiomyocytes. 
Material and Methods : All cells were cultured at 37°C. The cells were divided 
into seven main groups. Cells in the paclitaxel group were incubated with 2.5 
μM Paclitaxel for 12 hours and cells in the NAC+Paclitaxel group were 
incubated with 2.5 μM Paclitaxel for 12 hours and then incubated with 10 μM 
NAC for 24 hours. Intracellular free calcium concentration , reactive oxygen 
species (ROS) production measurements and cell viability analyses were done 
according to the study protocol. 
Results : Cytosolic calcium levels, apoptosis levels, intracellular ROS 
production levels were lower in paclitaxel+NAC group than in the paclitaxel 
group of cardiomyocytes. Also values were markedly lower in the 
paclitaxel+NAC+antranilic acid group when compared to the paclitaxel+NAC 
group. 
Conclusion : We found that TRPM2 channels are overactivated during 
paclitaxel induced cardiotoxicity and NAC could show a cardioprotective effect 
through TRPM2 channel modulation. 
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ÖZET  
 
Amaç: Biz çalışmamızda paklitaksel kaynaklı kardiotoksisiteyi ve 
kardiyomiyositlerde transient reseptör potansiyel melastatin 2 (TRPM2) 
kanalları üzerinden Ca+2 akışı, oksidatif stres ve apoptoz değerlerindeki 
değişimleri ve N-asetil sistein (NAC) ’in modülator rolünü araştırdık.  
Materyal ve Method: Bütün hücreler 37 ° C ' de kültürlendi. Hücreler yedi ana 
gruba ayrıldı. Paklitaksel grubundaki hücreler, 12 saat boyunca 2.5 μM 
Paklitaksel ile inkübe edildi ve NAC+Paklitaksel grubundaki hücreler, 12 saat 
boyunca 2.5 μM Paklitaksel ile inkübe edildi ve daha sonra 24 saat boyunca 10 
μM NAC ile inkübe edildi. Çalışma protokolüne göre intraselüler serbest 
kalsiyum konsantrasyonu, reaktif oksijen türleri (ROS) üretim ölçümleri ve 
hücre canlılığı analizleri yapıldı. 
Bulgular : Kardiyomiyositlerdeki sitosolik kalsiyum seviyeleri, apoptoz 
seviyeleri, hücre içi ROS üretim seviyeleri; paklitaksel+NAC grubunda, 
paklitaksel grubuna göre daha düşüktü. Ayrıca paklitaksel+NAC grubu ile 
karşılaştırıldığında paklitaksel+NAC+antranilik asit grubunda da belirgin olarak 
daha düşük değerler elde edildi. 
Sonuç : TRPM2 kanallarının paklitaksel kaynaklı kardiyotoksisite sırasında aşırı 
aktif olduğunu ve NAC'in TRPM2 kanal modülasyonu ile kardiyoprotektif etki 
gösterebileceğini bulduk. 
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INTRODUCTION  
 

Cardiotoxicity is a potential complication of chemotherapy, and it can limit 
the clinical use of chemotherapeutic agents. These agents induce apoptosis 
and necrosis and lead to the suppression of angiogenesis or deterioration of 
repair mechanisms not only in cancer cells but also in cardiomyocytes. The 
generation of oxidative stress is a widely accepted pathophysiological 
mechanism underlying chemotherapy-induced cardiomyopathy (1, 2). 
Paclitaxel (PAC), an inhibitor of microtubule polymerization, is widely used as 
a treatment for multiple malignancies (3). The incidence of left ventricular 
dysfunction associated with PAC ranges from 5 to 15% (4). The underlying 
pathophysiological mechanism associated with PAC-induced cardiotoxicity is 
not well understood. According to some research, PAC can induce cardiac 
muscle damage by affecting subcellular organelles (5). Other research 
reported that PAC altered cytosolic calcium (Ca2+) signaling by affecting 
mitochondrial permeability (6). 

As the management of adverse cardiovascular events in patients treated 
with PAC is not well defined, it is important to understand the molecular 
mechanisms. Meshkini et al. reported that PAC-induced cytotoxicity was 
associated with the generation of reactive oxygen species (ROS) and 
glutathione depletion (7). At present, there is no reliable and effective 
preventative treatment for PAC-induced cytotoxicity.  

We speculated that antioxidants could be used for cardioprotection. The 
present study focused on the potent antioxidant N-acetyl cysteine (NAC), 
which is a widely used drug in clinical practice. Previous studies demonstrated 
that NAC provided protection against drug-induced cardiac damage (8, 9). The 
mechanisms of NAC and its effects on cardiotoxicity are related to its 
antioxidant activity, effects on mitochondrial function, and regulation of cell 
survival and apoptosis (10).  

Transient receptor potential (TRP) channels are unique ion channels, which 
influence cell apoptosis and survival. TRP melastatin 2 (TRPM2), a member of 
the melastatin TRP family, is widely expressed in many cell types, including 
cardiac cells. It is activated in response to oxidative stress, which can be 
initiated by pharmacological stimuli (11, 12). TRPM2 channels are permeable 
to Ca2+ and have been investigated in several conditions associated with 
oxidative stress. Thus, the activation of these channels may play a major role 
in the pathogenesis of chemotherapy-induced cardiotoxicity.  

Previous research demonstrated the role of TRPM2 channels and the 
protective effects of NAC against oxidative stress and Ca2+ influx in other cell 
types (13). The aim of the present study was to investigate the effect of PAC 
therapy on Ca2+signaling, apoptosis, and oxidative stress in cardiomyocytes 
and to evaluate the cardioprotective effect of  NAC through TRPM2 channels 
at the cellular level in an in vitro model. 
 
MATERIAL and METHODS 
 
Cell culture and reagents 

A human cardiomyocyte cell line, (AC16), was purchased from ATCC. The 
cardiomyocytes were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) (Sigma) containing 10% fetal bovine serum (Fisher Scientific) and 1% 
penicillin/streptomycin (Thermo Fisher, MA, USA). The cells were evenly 
distributed (1 × 106 cells) in each of 8–10 sterile filter cap flasks (5 ml, 25 cm2). 
The cells were then incubated at 37° C in a 5% carbon dioxide incubator in a 
humidified atmosphere. After the cells reached 75–85% confluence, they were 
incubated with the chemical compounds described in the groups section. The 
cells were examined daily for evidence of contamination. After the 
treatments, the cells were detached using 0.25% Trypsin/EDTA and split into 
sterile Falcon tubes for analyses. All the cells in the study groups were 
obtained from the same passage. 

APOPercentage dye with releasing buffer were purchased from Biocolor Ltd. 
(Northern Ireland), JC1 was purchased from Santa Cruz (TX, USA), and Fura 2 
AM was purchased from Calbiochem (Darmstadt, Germany). For the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability 
assay, MTT dye was purchased from Thermo Fisher. Dihydrorhodamine-123 
(DHR123) was obtained from Molecular Probes (OR, USA). Caspase 3 and 
caspase 9 substrates were purchased from Biovision (CA, USA).  
 
Groups 
The study was planned as 7 main groups below and all the cells in the study 
groups were obtained from the same passage. 
Group 1 (Control): None of the study drugs were used and cardiomyocytes 
were kept in a flask containing the same cell culture condition. 
Group 2 (PAC): Cardiomyocytes were incubated with 2.5 µM paclitaxel for 12 
hrs (14). 

Group 3 (PAC+ACA): Cardiomyocytes were incubated with 2.5 µM paclitaxel 
for 12 hrs and then incubated with antranilic acid (ACA, 0.04 mM, 30 min). 
Group 4 (PAC+NAC): Cardiomyocytes were incubated with 2.5 µM paclitaxel 
for 12 hrs and then incubated with 10 µM N-acetyl cysteine for 24 hrs. 
Group 5 (PAC+NAC+ACA): Cardiomyocytes were incubated with 2.5 µM 
paclitaxel for 12 hrs and then incubated with 10 µM N-acetyl cysteine for 24 
hrs and then incubated with antranilic acid (ACA, 0.04 mM, 30 min). 
Group 6 (NAC): Cardiomyocytes were incubated with 10 µM N-acetyl cysteine 
for 24 hrs (15). 
Group 7 (NAC+ACA): Cardiomyocytes were incubated with 10 µM N-acetyl 
cysteine for 24 hrs and then incubated with antranilic acid (ACA, 0.04 mM, 30 
min). 
In related experiments (except for calcium signaling), the cells were further 
treated with cumen hydroperoxide (CMPx) (0.1 mM, 10 min)  and during 
calcium signaling analysis (Fura 2 AM),  cells were stimulated on 20th cycles 
with 0.1 mM CMPx for activation of TRPM2 channel before related analysis in 
the existence of normal calcium (1.2 mM) in extracellular environment.  
 
Measurement of the intracellular Ca2+ (Ca2+i) concentration 

The Ca2+i concentration was measured using ultraviolet light excitable Fura 
2 acetoxymethyl ester dye (Calbiochem) as an intracellular free Ca2+ indicator. 
All the experimental procedures were carried out in accordance with those 
described by Uğuz et al. (16), which included 4 μM Fura 2 AM (Calbiochem) 
fluorescent dye to staining period ending. The fluorescence emission intensity 
at 510 nm was determined in individual wells using a plate reader equipped 
with an automated injection system (SynergyTM H1; Biotek, USA) at alternating 
excitation wavelengths of 340 and 380 nm every 3 s for 50 acquisition cycles. 
During the measurement of Ca2+i signaling, the TRPM2 channels were 
stimulated using an automatic injector with cumene hydroperoxide (0.1 mM) 
on the 20th cycle. Ca2+i was measured as modified by Uguz et al. and Martinez 
et al. (16, 17). 
Measurement of the production of intracellular ROS  

The measurement of intracellular ROS production was carried out in 
accordance with the experimental procedure of Espino et al. (18). The cells 
(106 cells/ml per group) were incubated with 20 μm of a noncharged, 
nonfluorescent dye, DHR123, at 37° C for 25 min (18). The DH123 dye easily 
passes through the cell membrane and is oxidized to cationic rhodamine 123 
(Rh 123) inside the cardiomyocytes. Rh 123 localizes in the mitochondria and 
exhibits green fluorescence. A SynergyTM H1 (Biotek) automatic microplate 
reader device was used for determining the fluorescent intensities of Rh 123. 
The analyses were performed at 488 nm (excitation) and 543 nm (emission) 
wavelengths. The data are presented as the fold increase as compared with 
the level before the treatment.  
 
Apoptosis assay 

APOPercentage (Biocolor Ltd.) dye was used for the detection and 
quantification of apoptosis. The dye actively bound to phosphatidyl serine 
lipids and was transferred into the cells. The apoptotic cells were stained red. 
An apoptosis assay was performed according to the manufacturer’s 
instruction and the method of Özdemir et al. (19). Apoptotic cells were 
detected using a microplate spectrophotometer at 550 nm (SynergyTM H1; 
Biotek). 
 
Caspase 3 and caspase 9 activity assays 

Caspase 3 and caspase 9 activity were measured using methods described 
previously (20, 21). Caspase 3 (AC-DEVD-AMC) and caspase 9 (AC-LEHD-AMC) 
substrates cleavages were determined using a SynergyTM H1 (Biotek) 
microplate reader at 360 nm and 460 nm wavelengths (excitation/emission). 
The values were evaluated as fluorescent units/mg protein and shown as the 
fold increase over the level before treatment (experimental/control). 
Analysis of the mitochondrial membrane potential  

The mitochondrial membrane potential was determined by assessing the 
fluorescence intensity of the JC1 (1 µM) dye at a single excitation wavelength 
of 485 nm (green), emission wavelength of 535 nm, and red signal at 540 nm 
(excitation) and 590 nm (emission) wavelengths (SynergyTM H1; Biotek) (22, 
23). Data are presented as emission ratios (590/535). Mitochondrial 
membrane potential changes were quantified as the integral of the decrease 
in the JC1 fluorescence ratio of the experimental/control. 
 
Cell viability (MTT) assay  

Cell viability was evaluated by an MTT assay. After treatment with the 
chemical compounds described in the group sections, the cardiomyocytes 
were washed and then incubated with fresh DMEM containing MTT (0.5 
mg/ml) at 37° C for 90 min (24). The supernatants were then removed, and 
dimethyl-sulfoxide was added to dissolve the formazan crystals.  
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The optical density was estimated using a SynergyTM H1 (Biotek) automatic 
microplate reader at a test wavelength of 490 nm and a reference wavelength 
of 650 nm to nullify the effect of cell debris. The obtained data are shown as 
the fold increase over the level before the treatment (experimental/control). 
Statistical analysis 

All data are presented as mean ± standard deviation (SD). To compare the 
different treatments, statistical significance was calculated by a one-way 
analysis of variance and the Mann–Whitney U test. All the data were analyzed 
using the SPSS statistical program, version 9.05 software (SPSS Inc., IL, USA). A 
value of p < 0.05 was considered statistically significant. 
 
 
 
 

 
RESULTS 
 
Effects of PAC and NAC administrations on cytosolic calcium  levels through 
TRPM2 channel activation  in cardiomyocytes 

The effect of PAC and NAC administrations on cytosolic calcium levels in 
cardiomyocyte cells are shown in figure 1A-B. The TRPM2 channel antagonist 
antranilic acid (ACA) was used to evaluate the receptors related to 
involvement of Ca2+  increase through TRPM2 channels. As shown in figure 1A-
B, the Ca2+  concentration in cardiomyocytes was (p<0.001) higher in the PAC 
group than in the control. The Ca2+  concentration was lower in the NAC+ACA 
group compared to the control (p<0.001). Also cytosolic Ca2+ concentration 
was lower in the PAC+ACA, PAC+NAC and PAC+NAC+ACA groups than in the 
PAC group (p<0.001). 
In addition, cytosolic Ca2+ concentration in the cardiomyocytes was markedly 
lower in the PAC+NAC+ACA group compared to the PAC+NAC group (p<0.001). 

 

 
Figure 1A-B. The effect of paclitaxel (PAC) (2.5 micromolar, 12 hrs) and N-acetyl cysteine (NAC) (10 µM, 24 hrs) on the [Ca2+]i concentration (A) and cytosolic calcium 
release (B) in cardiomyocyte cells. Cells are stimulated by cumene hydroperoxide (CMPx 0.1 mM and on 20th cycle) and cells in the antranilic acid groups (PAC+ACA, 
PAC+NAC+ACA, NAC+ACA)   were inhibited with antranilic acid (ACA 0.04 mM for 30 min) (mean ± SD and n=10). ap˂0.001 vs control,  bp˂0.001 vs PAC, cp˂0.001 vs 
PAC+NAC and dp˂0.001 vs NAC. 
PAC: Paclitaxel group, PAC+ACA: Paclitaxel+antranilic acid group, PAC+NAC: Paclitaxel+N-acetyl cysteine group, PAC+NAC+ACA: Paclitaxel+N-acetyl cysteine+ antranilic 
acid group, NAC: N-acetyl cysteine group, NAC+ACA: N-acetyl cysteine+antranilic acid group 
 
 
 
 
Effects of paclitaxel and NAC administrations on apoptosis levels in 
cardiomyocytes 
 
Effects of paclitaxel and NAC administrations on apoptosis levels are shown in 
figure 2. The apoptosis values were significantly higher in the paclitaxel group 
than control. The apoptosis values were significantly lower in the NAC and the 
PAC+NAC group than in the PAC group of cardiomyocytes (p<0.001). Also the 
values were lower in the PAC+NAC+ACA group when compared with the 
PAC+NAC group of cardiomyocytes (p< 0.001). 
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Figure 2. The effect of paclitaxel (PAC) (2.5 micromolar, 12 hrs) and N-acetyl cysteine (NAC) (10 µM, 24 hrs)  on apoptosis levels in the cardiomyocyte cells. Cells are 
stimulated by cumene hydroperoxide (CMPx 0.1 mM for 10 min) and cells in the antranilic acid groups (PAC+ACA, PAC+NAC+ACA, NAC+ACA) were inhibited with 
antranilic acid (ACA 0.04 mM for 30 min) (mean±SD and n=10).  ap˂0.001 vs control, bp˂0.001 vs PAC,  cp˂0.001 vs PAC+NAC and dp˂0.001 vs NAC. 
PAC: Paclitaxel group, PAC+ACA: Paclitaxel+antranilic acid group, PAC+NAC: Paclitaxel+N-acetyl cysteine group, PAC+NAC+ACA: Paclitaxel+N-acetyl cysteine+antranilic 
acid group, NAC: N-acetyl cysteine group, NAC+ACA: N-acetyl cysteine+antranilic acid group. 
 
Effects of paclitaxel and NAC administrations on intracellular ROS production 
in cardiomyocytes 
 

We show intracellular ROS production of groups in figure 3. Intracellular ROS 
levels were significantly higher in the paclitaxel group than control. The values 

were lower in the PAC+ACA (p<0.001), the PAC+NAC (p<0.001) and the 
PAC+NAC+ACA (p<0.001) than in the PAC group. Also the ROS production was 
markedly lower in the PAC+NAC+ACA group when compared to the PAC+NAC 
(p<0.001). 

  
 

 
Figure 3. The effect of paclitaxel (PAC) (2.5 micromolar, 12 hrs) and N-acetyl cysteine (NAC) (10 µM, 24 hrs)  on reactive oxygene species levels in the cardiomyocyte 
cells. Cells are stimulated by cumene hydroperoxide (CMPx 0.1 mM for 10 min) and cells in the antranilic acid groups (PAC+ACA, PAC+NAC+ACA, NAC+ACA) were 
inhibited with antranilic acid (ACA 0.04 mM for 30 min) (mean±SD and n=10). ap˂0.001 vs control, bp˂0.001 vs PAC,  cp˂0.001 vs PAC+NAC and dp˂0.001 vs NAC. 
PAC: Paclitaxel group, PAC+ACA: Paclitaxel+antranilic acid group, PAC+NAC: Paclitaxel+N-acetyl cysteine group, PAC+NAC+ACA: Paclitaxel+N-acetyl cysteine+antranilic 
acid group, NAC: N-acetyl cysteine group, NAC+ACA: N-acetyl cysteine+antranilic acid group. 
 
Effects of paclitaxel and NAC administrations on caspase 3 and 9 activities, 
mitochondrial depolarization levels and cell viability ( MTT) values in 
cardiomyocytes 
 

Mitochondrial membrane depolarization levels, caspase 3 and caspase 9 
activities and cell viability (MTT) values of groups are shown in figure 4 (A-B-

C-D) respectively. It has been shown that caspase 3 and 9 activities have an 
important role in the mitochondrial apoptotic pathways. Also they are 
associated with mitochondrial cytochrome c releasing during the apoptotic 
cascade. MTT values were significantly lower in the PAC group than control 
(p<0.001). The values were significantly higher in the PAC+ACA (p<0.001)  and 
PAC+NAC+ACA (p<0.001) groups than in the PAC group. 
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Figure 4A-D. The effect of paclitaxel (PAC) (2.5 micromolar, 12 hrs) and N-acetyl cysteine (NAC) (10 µM, 24 hrs) on mitochondrial membrane depolarization (A), Caspase 
3 (B), Caspase 9 (C) and MTT-Cell Viability (D) levels in the cardiomyocyte cells. Cells are stimulated by cumene hydroperoxide (CMPx 0.1 Mm, for 10 min) and cells in 
the antranilic acid groups (PAC+ACA, PAC+NAC+ACA, NAC+ACA) were inhibited with antranilic acid (ACA 0.04 mM for 30 min) (mean±SD and n=10).  ap˂0.001 vs control, 
bp˂0.001 vs PAC,  cp˂0.001 vs PAC+NAC and dp˂0.001 vs NAC. 
PAC: Paclitaxel group, PAC+ACA: Paclitaxel+antranilic acid group, PAC+NAC: Paclitaxel+N-acetyl cysteine group, PAC+NAC+ACA: Paclitaxel+N-acetyl cysteine+antranilic 
acid group, NAC: N-acetyl cysteine group, NAC+ACA: N-acetyl cysteine+antranilic acid group. 
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DISCUSSION 
 

Paclitaxel, an antimitotic drug, is used for the treatment of breast, ovarian, 
and non small cell lung cancers (25). Previous research reported that taxanes, 
such as PAC, can cause early left ventricular dysfunction and heart failure 
within 2 d of onset of therapy (26). Reported adverse effects of this 
chemotherapeutic agent on the heart included cardiomyocyte death, which 
led to cardiomyopathy or cardiac arrhythmias. The clinical cardiotoxicity of 
PAC was reported to range from 5–30% (25), and co-administration of PAC and 
doxorubicin increased the incidence of congestive heart failure to 20% (27). 

Despite the aforementioned data on PAC, the molecular mechanism of PAC-
induced cardiotoxicity remains unclear. Some studies suggested that both ROS 
and oxidative stress seemed to play a crucial role in chemotherapy-induced 
cardiotoxicity and subsequent cardiac dysfunction (28, 29). Studies also 
reported that widely used anticancer drugs, including PAC, induced 
mitochondrial dysfunction in vivo and in vitro (30, 31). 

Mitochondria play an important role in cell survival and apoptosis. Santulli 
et al. reported that Ca2+i overload was associated with mitochondrial 
dysfunction and impaired cardiac function after a myocardial infarction (32). 
Research showed that Ca2+ homeostasis was essential for the cellular 
physiology and pathophysiology in mitochondria, with mitochondrial Ca2+ 

uptake controlling Ca2+i signals and having a major impact on cell death (33, 
34). High levels of Ca+2 stimulated respiratory chain activity and were 
associated with increased levels of ROS (35). In a study by Kidd et al., PAC 
affected cytosolic Ca2+ signals by opening mitochondrial permeability 
transition pores (36). They concluded that the side effects of PAC could be 
associated with mitochondrial dysfunction and Ca2+ signal cascades (36). Pan 
et al. demonstrated that PAC-induced changes in Ca2+ significantly promoted 
apoptosis in breast cancer cells (14). Previous studies also demonstrated that 
Ca2+ was a major intracellular messenger and that it played an essential role in 
cardiomyocyte homeostasis and survival. Elevated levels of cytosolic Ca2+ 
stimulated ROS and led to the release of proapoptotic factors, which caused 
apoptosis (37, 38).  

TRP channels belong to a family of plasma membrane transporters of Ca2+ 
ions. They are unique ion channels, which influence cell death rates and cell 
survival (39). Some channels are constitutively open, whereas others are 
activated by Ca2+i overload (31, 32). TRPM2 is widely expressed in many cell 
types, including brain, heart, and endothelial cells (11, 40). Li et al. reported 
that TRPM2 channels were activated in response to oxidative stress, which 
could be initiated by pharmacological stimuli (12). Hoffman et al. showed that 
the modulation of Ca+2 entry via TRPM2 channels was important for 
maintaining mitochondrial function and reducing ROS levels in 
cardiomyocytes (41). Other studies demonstrated that TRPM2 channels were 
involved in myocardial ischemia-reperfusion injury (42, 43). In these studies, 
the authors suggested that TRPM2 channels were mainly associated with Ca2+ 

overload, mitochondrial dysfunction, and the apoptosis signaling pathway (42, 
43).  

In the present study, TRPM2 channels were present in cardiomyocytes, and 
they were stimulated by cumene hydroperoxide and blocked by antranilic 
acid, respectively. Moreover PAC increased oxidative stress, Ca2+ influx, and 
apoptosis in cardiomyocytes. NAC reduced the effectiveness of oxidative 
stress-sensitive TRPM2 channels in cardiomyocytes due to its antioxidant 
property. 

Previous research demonstrated a close relationship between heart failure 
and oxidative stress. ROS-induced changes in heart failure included 
myocardial hypertrophy, fibrosis, and apoptosis (44). When ROS production 
exceeded the capacity of control mechanisms, including superoxide 
dismutase, glutathione, and catalase, it damaged mitochondrial components 
and initiated apoptosis in the heart (45). As the major role of ROS in this 
pathology is well known, free radical scavengers, such as NAC, may be able to 
reduce this damage. Neri et al. showed protective effects of NAC on 
postprandial oxidative stress and endothelial dysfunction in patients with 
untreated type 2 diabetes mellitus (46).  

Although the importance of oxidative stress and antioxidant therapy in 
chemotherapy-induced cardiotoxicity is well known, its role in the modulation 
of TRPM2 channels has not been evaluated in cardiomyocytes before. 
Understanding the molecular mechanisms of chemotherapy-induced 
cardiotoxicity is necessary to improve preventive strategies. To the best of our 
knowledge, no previous studies have examined the effect of a combination of 
PAC and NAC on oxidative stress, apoptosis, and Ca2+ entry through TRPM2 
channels in cardiomyocytes. The present study indicated that NAC modulated 
PAC-induced oxidative stress and apoptosis through regulation of TRPM2 
channels. Furthermore, NAC suppressed mitochondrial depolarization levels 
and provided protection against the rate of programmed cell death, as 
determined by caspase 3 and caspase 9 measurements. 

Oxidative stress is associated with oxidative damage, which leads to Ca2+ 

influx into cells through TRPM2 channels. ROS, such as hydrogen peroxide, can 
affect the functions of several proteins and TRPM2 channels by oxidation of 
cysteine residues (47). These damaging effects of ROS on TRPM2 channels 
could be controlled by endogenous antioxidants, such as reduced glutathione 
(GSH). NAC is a sulphydryl donor, with a free thiol group, which enhances 
glutathione antioxidant capacity. NAC is hydrolyzed to cysteine in cells, 
thereby stimulating GSH synthesis. By this mechanism, NAC can prevent GSH 
depletion in cells. (48). Previous studies reported that an increase in 
glutathione peroxidase activity was cardioprotective against left ventricular 
remodeling and failure after a myocardial infarction (49, 50). Özgül et al. 
showed an activator role of GSH depletion on Ca2+ entry through TRPM2 
channels in dorsal root ganglions and demonstrated protective properties of 
NAC on Ca2+ entry through regulation of these channels (13). 

In conclusion, the results showed that PAC can induce apoptosis and 
oxidative stress and result in increased Ca2+i levels in cardiomyocytes. In 
addition, NAC showed protective effects against PAC-induced cardiotoxicity 
through modulation of TRPM2 channels. Given the absence of an effective 
treatment for chemotherapy-induced cardiotoxicity, understanding of the 
underlying pathophysiological mechanism of cardiotoxicity and potential 
therapeutic targets are important in patients treated with chemotherapeutic 
agents. 
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