SELF-EXPANDABLE REMOVABLE PROSTHESIS

Ahmet GÖRGÜL, M.D., Burçuk KAYHAN, M.D., Mehmet CINDORUK, M.D.,
Zeynep AKI, M.D., Bilent MENTEŞ, M.D., Selahattin ÜNAL, M.D.

Gazi University, Faculty of Medicine, Departments of Internal Medicine and General Surgery, Ankara, Turkey

SUMMARY: Patients with advanced cancers of the esophagus or the esophagogastric junction suffer from dysphagia. We report the clinical feasibility of a new kind of self-expanding metal stent (nitinol coil) for the endoscopic treatment of this symptom.

Key Words: Stent, Esophageal Carcinoma, Soms.

INTRODUCTION
The majority of patients with cancers of the esophagus or the esophagogastric junction present with an incurable disease during the diagnosis. (6, 28) Patients with advanced cancers of the esophagus or the esophagogastric junction suffer from dysphagia which causes malnutrition and pain. Because of this, the major goal of therapy is optimal palliation of dysphagia, also, this palliation improves quality of life. Surgery, external beam radiotherapy or laser therapy are all the choices of this palliation, but endoscopic prosthesis placement is an easier and cheaper way for the palliation treatment of malignant esophageal obstruction (4, 5, 28, 29). Prototypes of self-expanding metal prosthesis for the esophagus are in use since 1991 (23).

We report the clinical feasibility of a new kind of self-expanding metal stent (nitinol coil) with respect to the technical success, complications, and reintervention rate.

MATERIALS AND METHODS
Study Design:
This study was prospective and synchronous. Patients with malignant dysphagia due to esophageal or esophagogastric obstruction admitted to the hospital were considered for inclusion in this study (Fig. 1). All patients gave informed consent following extensive explanation of the risks and the therapeutic alternatives.

Patients:
All patients were considered inoperable by
surgeons and anesthesiologists because of local tumor extension, distant metastases or severe concomitant disease. The diagnosis was histologically verified in all cases. Details of the 4 patients are shown in Table 1. They had adenocarcinoma of the esophagus and all carcinomas localized at esophagogastric junction.

The mean age was 52 year. The mean tumor length was 4.5 cm.

<table>
<thead>
<tr>
<th>No</th>
<th>Age (Years)</th>
<th>Sex (M/Male, F/Female)</th>
<th>No of Stents</th>
<th>Diagnosis (Histology/Location)</th>
<th>Length of stenosis (cm)</th>
<th>Observation (Weeks)</th>
<th>Dysphagia grade Pre-stent</th>
<th>Dysphagia grade Post-stent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46</td>
<td>M</td>
<td>EG 1808.5</td>
<td>Adenoc/Distal</td>
<td>4.5</td>
<td>7 (alive)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>39</td>
<td>M</td>
<td>EG 1808.5</td>
<td>Adenoc/Distal</td>
<td>4.5</td>
<td>5 (alive)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>F</td>
<td>EG 1808.5</td>
<td>Squamous/Distal</td>
<td>5.0</td>
<td>3 (alive)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>72</td>
<td>F</td>
<td>EG 1808.5</td>
<td>Adenoc/Distal</td>
<td>4.0</td>
<td>3 (alive)</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Details of the patients are shown in the table.

Stent Implantation:
Following sedation of the patient with Dormicum (Midazolam 10 mg), the length of the stenosis was judged endoscopically and fluoroscopically. (Fig. 2) A guide wire (0.035 inch) was inserted under 7 mm diameter pediatric endoscopic (Olympus UG-FP7) and fluoroscopic control. We used Savary probe (up to 11 mm) for dilating stenotic section in one case. The self-expanding metallic stent (SEMS), constructed from nickel-titanium alloy or "nitinol" (Instent Inc., Eden Prairie, Minn.) was inserted over the guide wire (Fig. 3). An endoscope (Olympus UG-FP7) was inserted additionally and the stent was released under endoscopic and fluoroscopic control (Fig. 4, 5).

![Fig. 2: Fluoroscopy showing the length of esophageal stenosis.](image)

![Fig. 3: Fluoroscopy demonstrating inserted SEMS over the guide wire.](image)

Patient Assessment:
Patients were seen on scheduled readmissions or followed up with telephone interviews of monthly intervals. Quality of swallowing was assessed with the aid of a dysphagia score (15): 0: no dysphagia, 1: dysphagia to normal solids, 2: dysphagia to soft solids, 3: dysphagia to solids and liquids, 4: inability to swallow saliva. Table 1 shows dysphagia index before and after stent implantation.

RESULTS

Technical Success:
Technical success, i.e. correct stent placement was achieved in all cases (All stents could easily be passed after placement with a 7 mm endoscope - Olympus UG-FP7-).

Functional Efficacy and Survival:
The functional efficacy is shown in Table 1. The mean number of cumulative endoscopic interventions per patient was 3. No treatment complications were noted. There was no mortality or morbidity in the hospital. All patients were able to ingest all necessary calories by mouth, and
during follow-up period, no prosthesis exhibited tumor ingrowth. During average follow-up of 1 month (range of 1-2 months), no dysphagia was seen in any case (Fig. 6, 7, 8).

DISCUSSION

The diagnosis of malignant esophageal obstruction indicates a discouraging prognosis. Among all treatment modalities, only radical surgery offers a realistic chance of cure. Even after attempted curative resection, the five-year survival rate is only about 5% (29). Accordingly, non-operative interventions have been elaborated to treat the main symptom dysphagia. Available endoscopic therapy includes dilation with standard Savary-Gillard and balloon dilators, thermocoagulation, injection of alcohol or chemotheproductive agents, photodynamic therapy, intra-cavitary irradiation, and Nd-YAG laser treatment (3, 7, 9, 11, 12, 13, 14, 16, 17, 20, 21, 25, 26, 30). The placement of esophageal stents is an appealing method of palliative therapy for this dysphagia. Esophageal stenting has been shown to be a cheaper, faster, and more durable method of palliation of malignant dysphagia than other modalities, as reported by Fugger et al (8).

Recently self-expanding metallic stents have been introduced for the treatment of malignant esophageal stenosis (2, 5, 8, 10, 18, 19, 23, 24, 27). The expandable stents available until now have
included the Wallstent (Medinvent S.A., Lausanne, Switzerland) and the Gianturco Z-stent (Wilson-Cook, Winston-Salem, N.C.). We report our experience about a new self expanding stent made of nitinol (Ultraflex, Microvasive, Watertown, Mass.), which is an alloy of titanium and nickel that has a firm but flexible consistency once expanded. Advantages of this stent are its small diameter in the compressed state and the large lumen achieved once it is fully expanded. Its surface and edges are smooth, thus preventing mucosal complications. Moreover its flexibility allows for placement even in highly tortuous strictures. Both the granulation and tumor ingrowth can obliterate the lumen of the stent when using other prostheses, but in our experience, this risk is small for nitinol stents. White nitinol is easily removable, expandable stents are not removable as tumor growth may occur through the mesh. However, we found a high rate of gastroesophageal reflux after placement of the stent. The placement of expandable stents is not difficult, as confirmed with our experience with this new stent (22).

In summary, it is clear from this limited early experience, that the new nitinol self-expanding stent is easily inserted and better tolerated by the patient, than its plastic counterpart. However, long-term problems such as limitation of stent expansion by tumor rigidity and ingrowth by tumor or normal epithelium, remain to be addressed.

REFERENCES

