ABSTRACT

Objective: To evaluate the levels of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-β ligand (RANKL) in tension (mesial) and pressure (distal) sides during continuous orthodontic force.

Methods: Eighteen canine teeth of 9 adults (5 female, 4 male; age range 17.5-18.9 yrs) with different Angle classifications were included. After first premolar extractions, the maxillary canines were tipped distally by sentalloy closed coil springs with a continuous force of 200 g. Gingival crevicular fluid (GCF) was sampled from mesial and distal gingival crevices of each canine separately at baseline, 1 hour (h), 24 h, 168 h, and 1 month after force application. OPG and RANKL levels were analyzed by ELISA.

Results: Concentration of OPG showed an increase in mesial side, while there was a decrease in distal side at 1 h, demonstrating a statistically significant difference (p<0.05). RANKL expression declared no significant changes during the study.

Conclusion: Local host response towards continuous orthodontic force might lead changes in OPG expression between mesial and distal sides, revealing an acute cellular response of periodontal status depended upon the type of stress.

Key Words: Osteoprotegerin, RANKL, orthodontic force, gingival crevicular fluid, distalization, sentalloy coil spring

Received: 03.08.2103 Accepted: 04.30.2013

ÖZET

Amaç: Devamlı ortodontik kuvvet sonrasında hareket ettirilen dişlerin gerilim (mezial) ve basınç (distal) bölgelerinde osteoprotegerin (OPG) ve reseptör aktivatör nüklear faktör kappa-β ligand (RANKL) seviyelerinin değerlendirilmesidir.

Yöntemler: Farklı molar ilişki sahip, çekimli ortodontik tedavi gereksinimi bulunan ve ortalama yaşları 17.5-18.9 yıl olan dokuz birey ile (5 kız, 4 erkek) toplam 18 kanin diş araştırılmaya dahil edilmiştir. Birinci küçük az dişlerinin çekilmesini takiben üst kanin dişleri braketlenmiştir ve 200 gr devamlı kuvvet uygulayan sentalloy kapalı yaylar ile distalizasyon kuvveti uygulanmıştır. Diş eti oluğu sıvısı örnekleri, kanin dişlerin mezial ve distal yüzeylerinden kuvvet öncesi, kuvvetten 1 saat, 24 saat, 168 saat ve 1 ay sonra toplanmıştır. OPG ve RANKL seviyeleri ELISA testi ile analiz edilmiştir.

Bulgular: OPG kontrasyonu kuvvet uygulandıktan 1 saat sonra mezial yüzeyde artarken, distal yüzeyde azalmış olup, bu olgu istatistiksel olarak anlamlı bulunmuştur (p<0.05). RANKL seviyeleri çalışma boyunca istatistiksel olarak anlamlı değişmemiştir.

Sonuç: Devamlı ortodontik kuvvetler, dişlerin mezial ve distal yüzeylerinde OPG seviyelerinde farklılık göstermektedir, bu farklılık periodontal dokulardaki akut hücresel çevresel göstergesi olabilir.

Anahtar Sözcükler: Osteoprotegerin, RANKL, ortodontik kuvvet, diş eti oluğu sıvısı, distalizasyon, sentalloy kapalı yay

Geliş Tarihi: 08.03.2013 Kabul Tarihi: 30.04.2013

This study was supported by the Research Foundation Grant of Gazi University (03/2006-27).
INTRODUCTION
During fixed orthodontic treatment, periodontal ligament (PDL) tissues respond rapidly to mechanical stress with consequent metabolic changes which allow tooth movement. These responses are mediated by several inflammatory cytokines and enzymes, responsible for connective tissue remodeling (1, 2). These substances can be monitored by analysis of gingival crevicular fluid (GCF) composition which provides a non-invasive prediction of inflammatory mediators (3-5).

The bone remodeling after orthodontic forces initiates by the activation of vascular changes, synthesis of cytokines, prostaglandins and growth factors. The initial tooth movement is facilitated by an acute aseptic inflammatory reaction. Bone is resorbed in pressure areas on the side toward which the force is directed, and deposited at the tensile areas in the contralateral position. This way, the movement of teeth through bone is facilitated (1-6). Investigations in bone biology identified cytokines/cytokine receptors within the tumor necrosis factor (TNF) family that are required for the control of bone remodeling (4, 5, 7-10).

Osteoclastogenesis is primarily induced by one of these receptors, receptor activator of nuclear factor kappa-B ligand (RANKL), which binds to receptor activator of nuclear factor kappa-B (RANK), that is located on the surface of osteoclasts and osteoclast precursors. This binding mediates the attachment of osteoclasts to bone and promotes their survival (11). The activity of RANKL is controlled by a soluble decoy receptor, osteoprotegerin (OPG), which inhibits RANKL activation of osteoclastogenesis (11-13).

Past studies have focused on the role of RANKL and OPG in periodontal diseases and during orthodontic tooth movement (2, 14). Since bone remodeling is controlled by a balance between RANK-RANKL binding and OPG production, it is important to elucidate the cellular responses in tension and pressure areas of the PDL during orthodontic tooth movement. In this context, this study was designed to evaluate expression of OPG and RANKL in GCF at tension (mesial) and pressure (distal) sides at baseline, 1 hour (h), 24 h, 168 h and 1st month after application of continuous orthodontic force.

METHODS
Eighteen canine teeth of 9 adults (5 female, 4 male; age range 17.5-18.9 yrs) with different angle classifications were selected to participate in this study according to the following criteria: (1) being systemically healthy, (2) no use of any anti-inflammatory agents, antibiotics, immunosuppressives, or systemic contraceptives in the past six months and during the study period, (3) no evidence of periodontal bone loss in radiographs, (4) no history of smoking, (5) healthy periodontal tissues determined by clinical periodontal assessments including plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing depth (PD), and clinical attachment level (CAL), (6) orthodontic treatment requiring first premolar extraction and canine distalization. All participants received periodontal prophylaxis, including scaling and polishing before the collection of GCF. The participants’ rights were protected, and written informed consents were obtained according to the Gazi University Ethical Committee Board.

Orthodontic treatment planning and sample collection
The orthodontic treatment planning required extraction of first premolars followed by distalization of canine teeth. Four weeks was waited after extraction before orthodontic force application as the healing process after extractions would change the quality and quantity of GCF. Orthodontic brackets were placed on maxillary canines (Omni Roth, GAC International Inc, Bohemia, NY) and distalization forces were applied at distal direction on the segmental 0.016 × 0.022-inch stainless-steel archwires by using sentalloy closed coil springs with eyelets generating a continuous force of 200 g. The forces were verified by a calibrated orthodontic force gauge. GCF from each tooth was sampled from mesial and distal sides at baseline (pre-treatment observation period), 1h, 24 h, 168 h and 1st month after orthodontic force application. During the examination periods, no reactivation of orthodontic force was performed. All participants maintained good oral hygiene throughout the study, and there was no apparent change in PI, GI, PD or BOP at any time or at any side.

GCF sampling
GCF was sampled separately from the mesial and distal gingival crevices of each canine, where the orthodontic forces were applied. Supragingival plaque was removed in conjunction with a record of the PI. The teeth were gently air dried and GCF was collected after isolating the area with cotton rolls, drying the teeth and adjacent marginal gingival with air. The paper strips (Periopaper-ProFlow Inc, New York) were inserted for 30 seconds into the buccal crevice to a level of 1 mm below the gingival margin. After removing the first strip and waiting for one minute, a second strip was placed at the same side for another 30 seconds. Strips contaminated by saliva or blood were excluded from the sampled group. The paper strips from mesial and distal sides of each tooth were sealed in polypropylene containers separately. To determine the amount of GCF, an electronic scale (Precisa 62 A, Precisa instruments Ag, CH-Dietikon, Switzerland) was used for weighing the paper strips before and immediately after the collection. The difference between the two weights gave the volume of fluid collected, assuming a specific gravity of approximately 1. Each sample was stored at −70°C until being assayed.

OPG determination
OPG levels were determined by using a commercial ELISA kit (Human Osteoprotegerin ELISA, BioVendor, Heidelberg, Germany) according to the manufacturer’s instructions. In human OPG ELISA, the standards and samples (1:3 dilution) were incubated with a monoclonal anti-human OPG antibody coated in wells. After washing, biotin-labeled polyclonal anti-human OPG antibody was added and incubated with captured OPG. After adding conjugate and following stop solution, the absorbance values (optical densities=OD) were measured spectrophotometrically at a wavelength of 450 nm, and the results were evaluated quantitatively according to the ODs of standard OPG concentrations with regression-correlation analysis by using a computer based statistics program called Microsta. Data was determined in picomole (pmol), and calculation of the concentration in each sample was determined by dividing the amount of OPG by the GCF volume of each sample (pmol/l).

RANKL determination
RANKL levels were determined by using a commercial ELISA kit (sRANKL ELISA, BioVendor, Heidelberg, Germany) according to the manufacturer’s instructions. Strips were eluted by centrifugation (5000 x g, 4°C, 6 min) in 300 ml of solution containing 150 mM Tris, Pepstatin A, leupeptin, amastatin and antipain dihydrochloride. ELISAs were used for quantitative detection of human total sRANKL (free and OPG-bound RANKL) and OPG (BioVendor GmbH, Heidelberg, Germany). In human total sRANKL ELISA, calibrators and samples (1:100 dilution) were incubated in wells together with the excess of recombinant OPG. The sRANKL/OPG complex appeared during the two-hour incubation step and was captured by the immobilized anti-sRANKL monoclonal antibody. After washing, horseradish peroxidase-labelled anti-OPG polyclonal antibody was added and incubated in the wells. After adding conjugate and following stop solution, the absorbance values (OD) were measured spectrophotometrically at a wavelength of 450 nm, and the results were evaluated quantitatively according to the ODs of standard RANKL concentrations with regression-correlation analysis by using a computer based statistics program called Microsta. Data was determined in picomole (pmol), and calculation of the concentration in each sample was determined by dividing the amount of RANKL by the GCF volume of each sample (pmol/l).

Statistical evaluation
Statistical evaluation was performed by SPSS for Windows version 10.0 (Chicago, IL, USA). The average of the clinical parameters (PI, GI, BOP, PD and CAL), and the receptor levels were calculated for each subject. A 2-way repeated measures ANOVA was used to examine the effects of side (mesial/distal) and measurement time on OPG, RANKL and OPG/RANKL ratio. Greenhouse-Geisser adjustment was used to justify the assumption of sphericity. A Bonferroni test was used for pairwise multiple comparisons after any repeated-measures ANOVA that showed significance. A p value < 0.05 was considered as statistically significant.
RESULTS

The clinical indices of subjects were recorded at baseline, and the mean and standard deviation of PI, GI, PD and BOP were measured as 0.42 ± 0.01 mm, 0.41 ±0.12 mm, 1.96 ±0.16 mm, and 19.61 ± 0.01 %, respectively. No signs of periodontal destruction were observed in any subject during the study.

Tables 1 through 3 demonstrate the mean ± SD, minimum and maximum values of GCF amount, and concentration values of OPG and RANKL, respectively. Results indicated that the concentration of OPG demonstrated a rise in the mesial side at 1 h, while there was a decrease in the distal side, declaring a statistically significant difference (p = 0.019, Table 2). The concentration of RANKL did not reveal significant changes, indicating no significant effect of side and time (Table 3).

The total amount of OPG and RANKL at mesial and distal sides were similar, no significant effect of side and time on the total amounts were found, as illustrated in Figures 1 and 2 respectively.

OPG/RANKL ratio was shown in Figure 3. There was no significant effect of side and time on the OPG/RANKL ratio. An increased OPG/RANKL ratio in 1 h was followed by a decrease at 24 h, and an up-regulation was detected at 1 month.

DISCUSSION

Investigations identified that mechanical stimulus induces connective tissue remodeling through the up-regulation of cells in PDL, in which alveolar bone resorption and apposition is triggered. OPG and RANKL are cytokines regulating osteoclastogenesis; RANKL is a pro-resorptive factor, while OPG is a powerful osteoprotective agent (7). Orthodontic tooth movement is facilitated by bone resorption in pressure areas on the side toward which the force is directed, and deposition at the tensile areas in the contralateral position (1, 6).

In the current study, changes in OPG and RANKL levels between the tension (mesial) and pressure (distal) sides of teeth during early phase of orthodontic movement were assessed to evaluate whether the different stresses exerted on the periodontium are reflected by differences in GCF composition. Gianelly (16) stated that excessive forces compressed the roots and caused undermining resorption. It was postulated that intermittent forces produced an increase in deposition of alveolar bone, whereas continuous loading was unable to stimulate the remodeling process (17).

<table>
<thead>
<tr>
<th>Time</th>
<th>Mean ± SD</th>
<th>Min-Max*</th>
<th>Distal side</th>
<th>Mean ± SD</th>
<th>Min-Max*</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1.5E-03 ± 0.0</td>
<td>2,1E-04-2,9E-03</td>
<td>9,7E-04 ± 0.0</td>
<td>6,6E-04-1,3E-03</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>1st hour</td>
<td>9,7E-04 ± 0.0</td>
<td>7,4E-04-1,2E-03</td>
<td>1,2E-03 ± 0.0</td>
<td>8,4E-04-1,5E-03</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>24th hour</td>
<td>9,3E-04 ± 0.0</td>
<td>6,6E-04-1,2E-03</td>
<td>1,3E-03 ± 0.0</td>
<td>8,3E-04-1,8E-03</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>168th hour</td>
<td>1,3E-03 ± 0.0</td>
<td>7,3E-04-1,9E-03</td>
<td>9,5E-04 ± 0.0</td>
<td>6,2E-04-1,3E-03</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>1st month</td>
<td>1,0E-03 ± 0.0</td>
<td>6,8E-04-1,3E-03</td>
<td>9,5E-04 ± 0.0</td>
<td>6,5E-04-1,2E-03</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

* 95% confidence interval; ns, non-significant; *p< 0.05.

Table 2. Concentration values of OPG at mesial (tension) and distal (pressure) sides (pmol/l).

<table>
<thead>
<tr>
<th>Time</th>
<th>Mean ± SD</th>
<th>Min-Max*</th>
<th>Distal side</th>
<th>Mean ± SD</th>
<th>Min-Max*</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1.11± 0.64</td>
<td>0.60 – 2.61</td>
<td>1.19± 0.71</td>
<td>0.36– 2.35</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>1st hour</td>
<td>1.03± 0.69</td>
<td>0.57 – 2.72</td>
<td>0.83± 0.30</td>
<td>0.28– 1.21</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>24th hour</td>
<td>1.04± 0.51</td>
<td>0.43 – 2.15</td>
<td>0.96± 0.55</td>
<td>0.31– 1.92</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>168th hour</td>
<td>0.90± 0.44</td>
<td>0.28 – 1.55</td>
<td>1.29± 1.09</td>
<td>0.56– 3.69</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>1st month</td>
<td>0.98± 0.32</td>
<td>0.49 – 1.33</td>
<td>1.04± 0.50</td>
<td>0.49– 2.08</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

* 95% confidence interval; ns, non-significant.

Table 3. Concentration values of RANKL at mesial (tension) and distal (pressure) sides (pmol/l).
Continuous orthodontic force evoked changes in the expression of osteoclastogenesis-inhibiting activity of PDL cells in mesial and distal sides just after force application indicating acute reaction. Due to the less active osteoclastogenesis-supporting activity with continuous force throughout the study, application of lighter forces or intermittent forces may provide greater cellular activities for regeneration of PDL.

Conflict of Interest
No conflict of interest was declared by the authors.

REFERENCES