Arteriovenous malformations (AVMs) are generally congenital in origin and most frequently located in the central nervous system. Uterine AVMs are rare but potentially life-threatening lesions that should be suspected in women with unexplained vaginal bleeding. They can be congenital in origin but generally develop secondary to pelvic surgery, trauma, gestation, gestational trophoblastic disease (GTD), exposure to diethylstilbestrol, and endometrial and cervical malignancies. Doppler sonography combined with CT angiography (CTA) or magnetic resonance angiography (MRA) can successfully be used in diagnosing uterine AVM. In this paper a patient with congenital uterine AVM and its imaging findings are presented.

CASE REPORT

A 58-year-old nulliparous postmenopausal woman with a past history of habitual abortus presented with intermittent vaginal bleeding. She had no history of pelvic surgery or trauma. Physical examination and laboratory tests, including serum \(\beta \)-HCG levels, failed to reveal any pathologic findings. Gray-scale ultrasound (US) showed multiple serpiginous anechoic structures within the myometrium, occupying the uterine fundus and corpus, protruding into the endometrial cavity and extending to the right parametrium and right inguinal fossa. Color Doppler US revealed vascular flow and color aliasing in these anechoic structures (Fig. 1). Spectral analysis showed a vascular flow pattern of high velocity (peak systolic velocity: 120 cm/sec) and low resistance (RI: 0.52 PI: 1.13). CTA performed with a helical scanner capable of a 1 second gantry rotation time confirmed the localization of the nidus in the myometrium, and showed the feeding artery originating from the right internal iliac artery and a drainage vein connecting to the right main femoral vein (Fig. 2). In the light of these findings the diagnosis of congenital uterine AVM was established and the patient was referred for appropriate treatment and follow-up.

DISCUSSION

Vaginal bleeding in postmenopausal woman is an important symptomatology that might be caused by a broad spectrum of etiological entities. Among these various clinical settings, uterine AVM is a rare and generally overlooked cause (1,2). An AVM is a distinct disease entity composed of a tangle of vessels that possess the histological characteristics of both arteries and veins, lacking an intervening capillary network. Traditionally, uterine AVMs have been classified as congenital or acquired (3). Congenital uterine AVMs arise from an abnormality in the embryologic development of primitive vascular structures, which results in multiple abnormal communications between arteries and veins. Acquired uterine AVMs are really multiple small arteriovenous fistulas

Gazi University School of Medicine, Department of Radiology, Ankara, Turkey
Gumussuyu Military Hospital, Department of Radiology, Turkey
AVFs) between intramural arterial branches and the myometrial venous plexus and appear as a vascular tangle, mimicking congenital AVMs. An acquired AVM may potentially belong to an AVF. An acquired AVF is an abnormal direct passage between an artery and an adjoining vein without a network of abnormal vessels, potentially arising outside the uterus. Uterine AVM is not restricted to the postmenopausal period and has been reported in women aged 18-72 (1-5). This is especially true in patients with a history of infection, curettage, therapeutic abortion, pelvic surgery, endometrial carcinoma, or GTD. Uterine bleeding is thought to occur when vessels of the AVM are exposed to sloughing of the endometrium iatrogenically during D&C or during menses. The pattern of bleeding is intermittent and torrential. The presenting symptom of vaginal bleeding can be life threatening in 30% of patients and may require transfusion (3). When big enough, due to its mass effect, a uterine AVM can eventually cause lower extremity edema, palpable thrill and cardiac insufficiency.

Uterine AVM is usually first suspected upon examination with gray-scale US. The gray-scale sonographic appearance of AVM can be variable and non-specific, with the most common finding being multiple tubular anechoic spaces within the myometrium, lacking any mass effect and resulting in a ‘spongy’ myometrial echo texture. Other sonographic presentations can be in the form of a subtle myometrial inhomogeneity, a focal intramural mass mimicking a leiomyoma or an endometrial mass resembling an endometrial polyp. Therefore, the diagnosis of uterine AVM can not be confidently made with these non-specific gray-scale US findings alone and color Doppler US is required (5). Doppler US exhibits intense juxtaposed signals and color aliasing indicating vessels of varying orientation with different flow directions. Spectral analysis depicts a flow pattern of low-resistance and high peak systolic velocity. Magnetic resonance imaging findings of AVM are an enlarged uterus with multiple serpiginous flow-related signal void areas. Contrast enhanced CTA or MRA can easily delineate the feeding arteries and draining veins of the AVM. Although digital subtraction angiography (DSA) is still the gold standard, Doppler sonography combined with CTA or MRA
can successfully be used in diagnosing uterine AVM (5,6). Considering the invasive nature of the technique, DSA can be reserved for those patients undergoing surgical or imaging guided treatment. In the above presented case, the diagnosis of uterine AVM was obvious with Doppler findings combined with conventional US, and the demonstration of the feeding and draining vessels by CTA made DSA unnecessary.

The differential diagnosis of a uterine AVM includes fluid-filled intestinal loops, multilocular ovarian cysts, hydrosalpinx, pelvic varicosities, GTD and retained products of conception (1,5,7). On color Doppler US, a few or no vascular signals can be detected in ovarian cysts, hydrosalpinx or intestinal loop. Pelvic varicosities can easily be differentiated by the depiction of prominent parametrial vessels with normal venous spectral waveforms. Retained products of gestation appear as an endometrial-based mass that shows uterine Doppler US findings similar to an AVM. The gray-scale and Doppler US appearance of GTD may also overlap with that of an AVM. The main differentiating point is positive β-HCG values in both GTD and retention of gestational products. However, it should be also kept in mind that uterine AVM can coexist with GTD.

In conclusion, uterine AVMs are rare but potentially life threatening lesions that should be suspected in women experiencing unexplained vaginal bleeding, with anechoic structures detected in the uterus at US. Doppler US combined with CTA can be successfully used in the non-invasive diagnosis and accurate delineation of the feeder and drainer vessels of an AVM.

REFERENCES

Correspondence Address
A. Yusuf ÖNER, M.D.
Gazi Üniversitesi Tip Fakültesi Radyoloji Anabilim Dalı
06510, Besevler-Ankara
Telephone: 312 26616 88 Fax: 312 266 16 89
E-mail: yusuf@tr.net