BONE MINERAL DENSITY AFTER TREATMENT OF NON-HODGKIN’S LYMPHOMA IN CHILDHOOD

Aysu Duyan ÇAMURDAN1, Ayner OĞUZ2, Alev HASANOĞLU3, Ceyda KARADENİZ2, M. Orhun ÇAMURDAN1,
Nurten TÜRKÖZKAN4, Mustafa ÜNLÜ5

INTRODUCTION

With the improvements over the past 30 years, children who receive anti-cancer chemotherapy survive into adulthood (1, 2). It has been postulated that 1/250 of adults over 25 years of age will be treated for a childhood cancer by the year 2010 (3). As the survival rates increase, the long-term side effects of cytotoxic therapy like endocrine system dysfunction, cataracts, renal dysfunction, secondary malignancies, psychological problems and osteoporosis are becoming more important (1, 2, 4-8).

Osteoporosis is defined as a decrease in bone mineralization and causes morbidity, mortality and financial problems (9-11). Because childhood bone mass is the main determinant of an adult bone fracture (7, 12, 13) and new advances in osteoporosis focus on its prevention more than its therapy (10, 14-18), osteoporosis should be taken into serious consideration in patients with childhood cancer.

With the advances in supportive care and new regimens, the success rate in non-Hodgkin’s lymphoma (NHL) treatment has reached 80% and thus the importance of osteoporosis has doubled because of this high survival rate (1, 2, 4-8, 19).

PATIENTS AND METHODS

This study was performed in Gazi University Medical School Department of Pediatric Oncology between 1995 and 1997. The study included 31 NHL patients (6 girls and 25 boys) aged 4.5-18.0 (9.0 ± 3.8) years whose body weight and height were in normal ranges, and 30 healthy children (11 girls and 19 boys) aged 4-15 (9.4±3.2) years whose age, sex, height, weight and pubertal status were well matched with those of the patients. Pubertal status determination was based on the Tanner scale (20, 21). The local ethics committee approved the study.

Among the patients, 26 had small non-cleaved cell lymphoma (21 Burkitt and five non-Burkitt), three had large cell lymphoma, and two had lymphoblastic lymphoma, with three of them at stage II, 19 at stage III, and six at stage IV. The primary involvement area was the abdomen in 23 patients (74.1%), the head and neck in 12 patients (38.7%), and the mediastinum in 10 patients (19.3%). Twenty-seven of them were treated according to BFM-90, two according to LSA2L and two according to LMT-89 protocols; none of them had received radiotherapy. The duration of therapy was 3-12 months (6.0 ± 3.4). Three patients (9.7%) had fractures in the lower extremity and four (12.9%) had bone pain during or after therapy.
The cumulative doses of dexamethasone, ifosfamide, prednisolone (systemic and intrathecal) and methotrexate (MTX) (systemic and intrathecal) given to the patients are shown in Table 1.

Fasting blood samples were obtained from all subjects in the morning while none of them had received steroids or antibiotics for the previous 48 hours. Serum total calcium (tCa), inorganic phosphorus (P), magnesium (Mg), creatinine (Cr) and alkaline phosphatase (ALP) levels were measured with a Technicon RA-XT (Swords Co, IRELAND) analyzer using ortocrezolphytalein complexone, phosphomolibdat, calmogite Mg Complex, paranitrophenile phosphate and Jaffe methods respectively (22), while intact parathormone (PTH), osteocalcine and calcitonine levels were measured using a DSL-8000 ACTIVETM Intact PTH IRMA kit (Diagnostic Systems Laboratories, Inc, Texas, USA), DSL-6900 Osteocalcine Radio immunoassay kit (Diagnostic Systems Laboratories, Inc, Texas, USA) and DSL-5200 Ultra-sensitive Calcitonine Radio immunoassay kit (Diagnostic Systems Laboratories, Inc, Texas, USA). Cr, Mg, P and tCa were also measured and glomerular filtration rate (GFR), tubular phosphate reabsorption (TPR), and Ca excretion were calculated from the 24-hour urine samples (23). Bone mineral density (BMD) was measured from the 2nd to the 4th lumbar vertebrae (BMD-V) and

Table 1: The cumulative doses of the chemotherapoetic agents used in patients.*

<table>
<thead>
<tr>
<th></th>
<th>MTX® (n=31)</th>
<th>Prednisolone (n=31)</th>
<th>Dexamethasone (n=26)</th>
<th>Ifosfamide (n=26)</th>
<th>IT* Prednisolone (n=31)</th>
<th>IT* MTX (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0-30.0(9.8±7.5)</td>
<td>0.15-2.90 (0.42±0.21)</td>
<td>0.30-12.00 (0.45±0.18)</td>
<td>8.0-24.0 (11.4±3.3)</td>
<td>0.07-0.42 (0.20±0.08)</td>
<td>0.04-0.22 (0.10±0.04)</td>
<td></td>
</tr>
</tbody>
</table>

*: All values are given as g/m². IT: Intrathecal, ®: Methotrexate

Table 2: Anthropometric and laboratory parameters of the patient and control groups.

<table>
<thead>
<tr>
<th>Anthropometric parameters</th>
<th>Patient Group (n:31)</th>
<th>Control Group (n:30)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year) mean±SD</td>
<td>9.0 ± 3.8</td>
<td>9.4±3.2</td>
<td>0.38</td>
</tr>
<tr>
<td>Gender (Female/Male)</td>
<td>6/25</td>
<td>11/19</td>
<td>0.46</td>
</tr>
<tr>
<td>Height (cm) mean±SD</td>
<td>129.2±21.3</td>
<td>136.3±18.3</td>
<td>0.12</td>
</tr>
<tr>
<td>Weight (kg) mean±SD</td>
<td>30.8±14.3</td>
<td>34.8±13.8</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Laboratory parameters and normal ranges for age parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patient Group (n:31)</th>
<th>Control Group (n:30)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca (mg/dl)</td>
<td>8.2-10.6</td>
<td>10.1±1.7</td>
<td>10.0±0.8</td>
</tr>
<tr>
<td>P (mg/dl)</td>
<td>2.5-4.5</td>
<td>5.4±1.9</td>
<td>4.5±0.7</td>
</tr>
<tr>
<td>ALP (U/l)</td>
<td>145-420</td>
<td>220.1±81.9</td>
<td>192.0±54.3</td>
</tr>
<tr>
<td>Mg (mg/dl)</td>
<td>1.5-2.3</td>
<td>1.9±0.4</td>
<td>2.0±0.6</td>
</tr>
<tr>
<td>Osteocalcine (ng/ml)</td>
<td>5-60</td>
<td>17.7±12.9</td>
<td>12.9±10.8</td>
</tr>
<tr>
<td>Calcitonine (pg/ml)</td>
<td><25-70</td>
<td>20.7±16.0</td>
<td>17.8±10.1</td>
</tr>
<tr>
<td>PTH(intact) (pg/ml)</td>
<td>10-55</td>
<td>33.1±17.5</td>
<td>29.9±14.3</td>
</tr>
<tr>
<td>GFR* (ml/m/1.73m²)</td>
<td>89-165</td>
<td>114.7±37.8</td>
<td>105.3±20.2</td>
</tr>
<tr>
<td>TPR** (%)</td>
<td>83-98</td>
<td>86.6±7.6</td>
<td>88.8±6.0</td>
</tr>
<tr>
<td>Calciuria (mg/kg/d)</td>
<td>>4</td>
<td>2.2±1.6</td>
<td>2.9±1.4</td>
</tr>
</tbody>
</table>

*GFR: Glomerular Filtration Rate, **TPR: Tubular phosphate reabsorption, p >0.05
femur neck (BMD-F) using dual energy X-ray absorptiometry (DEXA) (NORLAND XR -35) (25).

Statistical analyses were performed using SPSS for Windows with the chi-square, Student-t test and Pearson correlation on analyzing systems.

RESULTS

The patient group was similar to the control group in terms of age, sex, body weight, height and pubertal status (p > 0.05).

The serum Ca, P, Mg, ALP, osteocalcine and calcitonine levels of all patients were at normal levels. All patients but one had normal tubular phosphate reabsorption rates and three had hypercalciuria and elevated intact PTH values. The patient and control groups were statistically similar with regard to their blood and urine measurements (p > 0.05). The age, sex, body weight, height, and laboratory parameters of both groups are given in Table 2.

BMD measurements of the groups are given in Figure 3. The BMD values of the patient group were lower than those of the control group although not significantly so (respectively, BMD-V: 0.574±0.188 g/cm², BMD-F: 0.658±0.191 g/cm² vs. BMD-V: 0.644±0.158 g/cm², BMD-F: 0.718±0.128 g/cm², p>0.05).

There was no correlation between the BMD values and the type, duration, dose of chemotherapy and time interval after the end of therapy (p>0.05).

DISCUSSION

Although there are numerous studies on childhood leukemia concerning the abnormalities in BMD as a result of primary illness, cranial radiotherapy and cytotoxic chemotheraphy (5, 12, 13, 25-36), there are relatively few investigations on childhood NHL (1, 7, 34).

Clinical manifestations of BMD abnormalities seen in patients with malignancy are bone pain, fracture and movement disorders (8, 37-39). The patients in this study showed similar manifestations: 6.7% of them had bone ache and 12.9% of them had pathologic fractures. Atkinson et al (32), in their study in patients with leukemia, found that 70% of them had low BMD values, which was attributed to the side effects of chemotherapy on bone mineral metabolism because all of the patients were in remission. They also found that fracture incidence was 64% for the first 6 months after therapy, and then it decreased to 39% for the same patients. These data show that side effects of therapy on bone metabolism are time dependent. O’Regan et al (38) and Ragab et al (39) support this postulation with their studies on patients with leukemia.

In the present study, although the difference was not significant, patients who completed the chemotherapy protocols had a tendency to have lower mean BMD values compared to the controls.

Hahn et al (40, 41) and Zonneveld et al (42) showed that patients treated with corticosteroid or MTX for non-neoplastic diseases had lower BMD values, supporting the idea that problems in bone metabolism seen in patients with malignancy originate from the therapies used, not from the primary illnesses.

The effect of chemotherapeutic agents’ side effects on bone metabolism influence both trabecular and cortical bone tissue (30, 36, 43, 44). In our study, the patient group had similar percentages for BMD-V (representing trabecular bone) and BMD-F (representing cortical bone), confirming that cortical and trabecular bones are equally affected.

In this study, no correlations were found between BMD values and the duration or dose of the chemotherapeutic agent. In the literature, there are conflicting results; some authors postulate that the decrease in BMD is dose and/or time dependent (13, 40, 44), but others do not support this statement (35, 43).

The underlying mechanism of the side effects of chemotherapeutics on bone mineralization remains unclear and is supposed to be multifactorial (6-8). MTX, corticosteroids and ifosfamide inhibit active vitamin D production, leading to Ca malabsorption and thus contributing to a decrease in serum Ca. This in turn causes an increase in serum PTH, leading to increased bone resorption (8, 41). In this study, only three patients in the patient group had slightly high PTH levels. Similarly, Atkinson et al (37) found PTH values to be normal in all of their leukemia patients and postulated that decreased BMD values in their patients were due to MTX and steroid-induced renal loss and intestinal malabsorption of Mg from the intestine, leading to hypomagnesemia and related hypocalcemia triggered by MTX and steroids. In our study, serum Mg levels were normal in a vast majority of patients. Rickers et al (44) and Schepper et al (45) also found normal Mg and Ca levels in their patients with decreased BMD values. Another antineoplastic agent known to have deleterious effects on bone metabolism is ifosfamide. Its toxicity originates from the effects on renal proximal tubules, leading to hyperphosphaturic hypophosphatemia, hypercalciuria and hyperparathyroidism (2, 7, 44). In our study, all patients but one had normal TPR rates and three had hypercalciuria and elevated PTH values. These data show that the underlying mechanism cannot be explained by only one manifestation, but by the combination of all and other unknown factors.

At this point, the time elapsing for the compensatory mechanisms to take place becomes a matter of importance. The studies in the literature do not give an exact time interval between the end of chemotherapy and the prevalence of deleterious effects of them on BMD, and thus the measurable parameters of compensatory mechanisms. Studies designed several years after the end of chemotherapy find no difference in BMD values (1). This supports the hypothesis that changes in BMD occur slowly and need more than several years to take place. In our study, the time interval based on a wide range (1-52 months) also makes interpretation difficult. The finding
that biochemical parameters do not match the logical expectations and that BMD changes are not statistically significant may be the result of this wide range of time interval. For some patients, the time that elapsed after the chemotherapy may not have been sufficient for the effects of therapeutic agents to take place. On the other hand, for some other patients, it could have been long enough for the compensatory mechanisms to take place and return the values to normal ranges. In order to clarify this matter, studies having homogeneous time intervals between the end of the therapy and the time of the measurements are needed.

In conclusion, the findings of our study indicate that BMD may have been affected by the cytotoxic therapy used for the treatment of children with NHL, and this point should be taken into consideration during the follow-up of such children. Studies with more patients, together with a homogeneous time interval, may be the result of this wide range of time interval. For some patients, the time that elapsed after the chemotherapy may not amount to significant changes and that BMD changes are not statistically significant.

